精英家教网 > 高中数学 > 题目详情
9.如图,F是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为$\frac{1}{2}$.点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线l1:$x+\sqrt{3}y+3=0$相切.则椭圆的方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.

分析 由已知设F(-c,0),B(0,$\sqrt{3}c$),由圆与直线相切的性质和点到直线的距离公式能求出c=1,由此能求出椭圆方程.

解答 解:由已知设F(-c,0),B(0,$\sqrt{3}c$),
∵kBF=$\sqrt{3}$,kBC=-$\frac{{\sqrt{3}}}{3}$,C(3c,0),
且圆M的方程为(x-c)2+y2=4c2,圆M与直线l1:x+$\sqrt{3}$u+3=0相切,
∴$\frac{{|{1×c+\sqrt{3}×0+3}|}}{{\sqrt{1+3}}}=2c$,解得c=1,
∴所求的椭圆方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.
故答案为:$\frac{x^2}{4}+\frac{y^2}{3}=1$.

点评 本题考查椭圆方程的求法,是中档题,解题时要认真审题,注意圆与直线相切的性质和点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知公差不为0的等差数列{an},a1=1,且a1,a2,a6成等比数列.
(Ⅰ)求数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和Sn
(Ⅱ)若以数列{an}的公差为最小正周期的函数f(x)=Asin(ωx+$\frac{π}{3}$)(A>0,ω<0)值域是[-2,2],求函数的f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高二年级有男生1000人,女生800人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高二年级抽取了45名学生的测评结果,并作出频数统计表如下:
表一:男生  
等级优秀合格尚待改进
频数15x    5
表二:女生
等级优秀合格尚待改进
频数 15  3  y
(1)计算x,y的值;
(2)由表一表二中统计数据完成下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
男生女生总计
优秀151530
非优秀
总计45

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某工厂生产的产品A的直径均位于区间[110,118]内(单位:mm),若生产一件产品A的直径位于区间[110,112),[112,114),[114,116),[116,118)内该厂可获利分别为10,30,20,10(单位:元),现在该厂生产的产品中随机抽取200件测量它们的直径,得到如图所示的频率直方图.
(1)求a的值;
(2)估计该厂生产一件A产品的平均利润.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设数列{an}的前n项和为Sn,若Sn=n2+2n(n∈N*),则$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=(  )
A.$\frac{1}{3}-\frac{1}{2n+1}$B.$\frac{1}{3}-\frac{1}{2n+3}$C.$\frac{1}{6}-\frac{1}{4n+3}$D.$\frac{1}{6}-\frac{1}{4n+6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=lg(4-x)+x0的定义域是{x|x<4,且x≠0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C:y2=2px(p>0)上一点A(1,m)到其焦点的距离为2
(1)求常数p和m的值
(2)当m<0时,是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于$\frac{\sqrt{5}}{5}$?若存在,求直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设α角属于第二象限,且|cos$\frac{α}{2}$|=-cos$\frac{α}{2}$,则$\frac{α}{2}$角属于三象限,已知tanθ=2,则sin2θ+sinθcosθ-2cos2θ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标在直角坐标系xOy中,直线C1:x=2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求C1,C2的极坐标方程;
(2)若直线C3的极坐标方程为θ=$\frac{π}{4}$(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.

查看答案和解析>>

同步练习册答案