精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形ABCD边长为1,从某时刻起,将线段AB,BC,CD,DA分别绕点A,B,C,D顺时针旋转相同角度α(0<α< ),若旋转后的四条线段所围成的封闭图形面积为 ,则α=(
A.
B.
C.
D.

【答案】A
【解析】解:如图所示,旋转后的四条线段所围成的封闭图形为正方形,

边长为cosα﹣sinα,

由题意可得:(cosα﹣sinα)2=

可得:cosα﹣sinα=± ①,2sinαcosα=

又0<α< ,可得:cosα+sinα= = ,②

所以:由①②可得:cosα=

故α=

故选:A.

【考点精析】掌握扇形面积公式是解答本题的根本,需要知道若扇形的圆心角为,半径为,弧长为,周长为,面积为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 =(3 sinx, cosx), =(cosx, cosx),f (x)=
(1)求f(x)的单调递减区间;
(2)x∈[﹣ ]时,g(x)=f(x)+m的最大值为 ,求g(x)的最小值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax+b(a,b∈R). (Ⅰ)已知x∈[0,1]
(i)若a=b=1,求函数f(x)的值域;
(ii)若函数f(x)的值域为[0,1],求a,b的值;
(Ⅱ)当|x|≥2时,恒有f(x)≥0,且f(x)在区间(2,3]上的最大值为1,求a2+b2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,过椭圆M: (a>b>0)右焦点的直线x+y﹣ =0交M于A,B两点,P为AB的中点,且OP的斜率为 . (Ⅰ)求M的方程
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知sinα= ,且α∈( ,π).
(1)求tan(α+ )的值;
(2)若β∈(0, ),且cos(α﹣β)= ,求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,E为PA的中点,F为BC的中点,底面ABCD是菱形,对角线AC,BD交于点O.求证:

(1)平面EFO∥平面PCD;
(2)平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知位于y轴左侧的圆C与y轴相切于点(0,1)且被x轴分成的两段圆弧长之比为1:2,过点H(0,t)的直线l于圆C相交于M、N两点,且以MN为直径的圆恰好经过坐标原点O.

(1)求圆C的方程;
(2)当t=1时,求出直线l的方程;
(3)求直线OM的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线x2+y=8与x轴交于A,B两点,动点P与A,B连线的斜率之积为
(1)求动点P的轨迹C的方程.
(2)MN是动点P轨迹C的一条弦,且直线OM,ON的斜率之积为 .求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为 ,得到乙公司和丙公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记ξ为该毕业生得到面试的公司个数,若P(ξ=0)=
(Ⅰ)求p的值:
(Ⅱ)求随机变量ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案