【题目】选修4-1《几何证明选讲》
已知A、B、C、D为圆O上的四点,直线DE为圆O的切线,AC∥DE,AC与BD相交于H点
(1)求证:BD平分∠ABC;
(2)若AB=4,AD=6,BD=8,求AH的长.
【答案】(1) 详见解析(2)3
【解析】
试题分析:(1) 证明BD平分∠ABC实质就是求角相等:由弦切角定理得CDE=DBC ,由平行得CDE=DCA ,由同弧对等角得DBA=DCA ,三者结合得DBA=DBC (2)求线段长,一般利用相似三角形得比例关系:由ABH∽DBC,得,而由等角转化为等弦:由DBA=DBC 得AD=DC,,解得AH=3
试题解析:证明:(1)∵AC∥DE,∴CDE=DCA,又∵DBA=DCA,∴CDE=DBA
∵直线DE为圆O的切线,∴CDE=DBC
故DBA=DBC,即BD平分∠ABC
(2)∵CAB=CDB,且DBA=DBC,∴ABH∽DBC,∴
又EDC=DAC=DCA,∴AD=DC
∴, ∵AB=4,AD=6,BD=8∴AH=3
科目:高中数学 来源: 题型:
【题目】已知正项数列的前项和为,对任意,点都在函数的图像上.
(I)求数列的首项和通项公式;
(II)若数列满足,求数列的前项和;
(III)已知数列满足.若对任意,存在,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—1:几何证明选讲
如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B、C两点,圆心O在∠PAC的内部,点M是BC的中点.
(1) 证明:A、P、O、M四点共圆;
(2)求∠OAM+∠APM的大小
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】①您所购买的是名牌产品,您认为该产品的知名度
A.很高 B.—般 C.很低
②你们家有几个孩子?
③你们班有几个高个子同学? .
④你认为数学学习
A.较困难 B.较容易 C.没感觉
以上问题符合调查问卷要求的是( )
A.① B.② C.③D.④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校调查了20名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是,样本数据分组为,,,,.
(1)求直方图中的值;
(2)从每周自习时间在的受调查学生中,随机抽取2人,求恰有1人的每周自习时间在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(, )为奇函数,且相邻两对称轴间的距离为.
(1)当时,求的单调递减区间;
(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数的对称轴为,.
(1)求函数的最小值及取得最小值时的值;
(2)试确定的取值范围,使至少有一个实根;
(3)当时,,对任意有恒成立,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com