精英家教网 > 高中数学 > 题目详情
若f(x)是奇函数,且在(0,+∞)上是增函数,且f(-3)=0,则x•f(x)<0的解是(  )
A、(-3,0)∪(3,+∞)B、(-∞,-3)∪(0,3)C、(-∞,-3)∪(3,+∞)D、(-3,0)∪(0,3)
分析:先根据函数为奇函数求得f(3)=0且f(x)在(-∞,0)上是增函数,进而根据x•f(x)<0得出x<0且f(x)>0或x>0且f(x)<0,最后取并集.
解答:解:∵函数f(x)为奇函数
∴f(-3)=-f(3)=0
∴f(3)=0
∵函数在(0,+∞)上是增函数,
∴函数在(-∞,0)上是增函数,
∴对于x•f(x)<0
x<0
f(x)>0
,解得-3<x<0
x>0
f(x)<0
解得0<x<3
最后解得x的范围是(-3,0)∪(0,3)
故选D
点评:本题主要考查函数单调性的应用.解题的关键是首先找出函数的单调区间.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①ambn=(ab)m+n
②若f(x)是奇函数,则f(x-1)的图象关于点A(1,0)对称;
③a<0是方程ax2+2x+1=0有一个负实数根的充分不必要条件;
④设有四个函数y=x-1,y=x3,y=x
1
2
,y=x4
,其中y随x增大而增大的函数有3个.
其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是奇函数,且在(0,+∞)上是增函数,又f(-3)=0,则(x-1)f(x)<0的解是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x+1,
 x<0 
g(x)
 ,       x>0 
,若f(x)是奇函数,则g(2)的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•成都模拟)已知函数f(x)的定义域为R,且f(x)不为常函数,有以下命题:
①函数g(x)=f(x)+f(-x)一定是偶函数;
②若对任意x∈R都有f(x)+f(2-x)=0,则f(x)是以2为周期的周期函数;
③若f(x)是奇函数,且对任意x∈R都有f(x)+f(2+x)=0,则f(x)的图象关于直线x=1对称;
④对任意x1,x2∈R且x1≠x2,若
f(x1)-f(x2)x1-x2
>0
恒成立,则f(x)为(-∞,+∞)上的增函数.
其中正确命题的序号是
①③④
①③④

查看答案和解析>>

同步练习册答案