精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数在区间内的最小值为,求的值.(参考数据

(Ⅰ)详见解析;(Ⅱ).

解析试题分析:(Ⅰ) 本小题首先利用求导的公式与法则求得函数的导数,通过分析其值的正负可得函数的单调性;
(Ⅱ) 本小题主要利用导数分析函数的单调性,根据参数的取值范围得到函数在区间上单调性,然后求得目标函数的最值即可.
试题解析:(Ⅰ)由
            2分
①当时,恒成立,的单调递增区间是;           4分
②当时,
可得单调递减,单调递增.                    6分
(Ⅱ)结合(Ⅰ)可知:
①当时,在区间内单调递增,

矛盾,舍去;                              8分
②当时,在区间内单调递增,
, 与矛盾,舍去;    10分
③当时,在区间内单调递减,
得到,舍去;                          12分
④当时,单调递减,单调递增,

,则,故内为减函数,
                   14分
综上得                          15分
考点:1.求导得公式与法则;2.导数判断单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0.
(1)求a的值;
(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若,求的极小值;
(Ⅱ)在(Ⅰ)的结论下,是否存在实常数,使得?若存在,求出的值.若不存在,说明理由.
(Ⅲ)设有两个零点,且成等差数列,试探究值的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-(a+2)x+lnx.
(1)当a=1时,求曲线y=f(x)在点(1,f (1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e)上的最小值为-2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)求函数的极值;
(Ⅲ)对恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(Ⅰ)求证:
(Ⅱ)设直线均相切,切点分别为()、(),且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ) 求的单调区间;
(Ⅱ) 求所有的实数,使得不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知函数 .
(I)若是,的极值点,讨论的单调性;
(II)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)若函数在[1,2]上是减函数,求实数的取值范围;
(3)令,是否存在实数,当 (是自然对数的底数)时,函数的最小值是.若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案