【题目】某大学数学学院拟从往年的智慧队和理想队中选拔4名大学生组成志愿者招募宣传队.往年的智慧对和理想队的构成数据如下表所示,现要求选出的4名大学生中两队中的大学生都要有.
(1)求选出的4名大学生仅有1名女生的概率;
(2)记选出的4名大学生中女生的人数为,求随机变量的分布列和数学期望.
【答案】(1);(2)见解析.
【解析】分析:(1)选出的4人中智慧队和理想队的都要有,选法种数是种,选出的4名大学生仅有1名女生的选法有2种选法:从智慧队中选取1女生的选法共有种,从理想队中选取1女生的选法共有种,由此能求出选出的4名大学生仅有1名女生的概率.
(II)随机变量X的取值可为0,1,2,3,分别求出相应的概率,由此能求出随机变量的分布列和.
详解:
(1)选出的4人中智慧队和理想队的都要有,所以选法种数是:
(种)
选出的4名大学生仅有1名女生的选法有:
从智慧队中选取1女生的选法共有(种)
从理想队中选取1女生的选法共有(种)
或者用排除法:(种)
所以,选出的4名大学生仅有1名女生的概率为
(2)随机变量的可能取值为0,1,2,3
则,
,
,
,
所以随机变量的分布列为
.
科目:高中数学 来源: 题型:
【题目】已知直线的方程为,其中.
(1)求证:直线恒过定点;
(2)当变化时,求点到直线的距离的最大值;
(3)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 且是奇函数.
(1)求实数的值;
(2)若,对任意都有恒成立,求实数的取值范围;
(3)设 且,若,是否存在实数使函数在上的最大值为?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),过原点的两条直线分别与曲线交于异于原点的、两点,且,其中的倾斜角为.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求和的极坐标方程;
(2)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂有100名工人接受了生产1000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x人,他们加工完甲型装置所需时间为小时,其余工人加工完乙型装置所需时间为小时,则生产1000台某产品的总加工时间y是一个关于x的函数。
(1)求y关于x的函数解析式;
(2)如何分配工人才能使生产1000台某产品的总加工时间最少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的一个焦点与抛物线y2=-4x的焦点相同,且椭圆C上一点与椭圆C的左,右焦点F1,F2构成的三角形的周长为.
(1)求椭圆C的方程;
(2)若直线l:y=kx+m(k,m∈R)与椭圆C交于A,B两点,O为坐标原点,△AOB的重心G满足: ,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.
(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;
(2)当AB=3,AD=2时,求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场对顾客实行购物优惠活动规定,一次购物付款总额:
(1)如果标价总额不超过200元,则不给予优惠;
(2)如果标价总额超过200元但不超过500元,则按标价总额给予9折优惠;
(3)如果标价总额超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予8折优惠.
某人两次去购物,分别付款180元和423元,假设他一次性购买上述两次同样的商品,则应付款( )
A.550元B.560元C.570元D.580元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,椭圆的一个顶点与两个焦点构成的三角形面积为2.
(1)求椭圆的方程;
(2)已知直线与椭圆交于两点,且与轴,轴交于两点.
(i)若,求的值;
(ii)若点的坐标为,求证:为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com