精英家教网 > 高中数学 > 题目详情
17.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0)(x1≠x2),都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$.则下列结论正确的是(  )
A.$f({log_2}^{\frac{1}{4}})>f({0.2^3})>f(\sqrt{3})$B.$f({log_2}^{\frac{1}{4}})>f(\sqrt{3})>f({0.2^3})$
C.$f(\sqrt{3})>f({0.2^3})>f({log_2}^{\frac{1}{4}})$D.$f({0.2^3})>f(\sqrt{3})>f({log_2}^{\frac{1}{4}})$

分析 由已知可得函数f(x)在(0,+∞)上为减函数,进而可得三个函数值的大小.

解答 解:对任意的x1,x2∈(-∞,0)(x1≠x2),都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}>0$,
∴函数f(x)在(-∞,0)上为增函数,
又由函数f(x)是定义在R上的偶函数,
∴函数f(x)在(0,+∞)上为减函数,
又∵${lo{g}_{2}\frac{1}{4}}^{\;}$=-2,
∴f(${lo{g}_{2}\frac{1}{4}}^{\;}$)=f(2),
∴$f(0.{2}^{3})>f(\sqrt{3})>f(2)$,
即$f(0.{2}^{3})>f(\sqrt{3})>f({lo{g}_{2}\frac{1}{4}}^{\;})$,
故选:D

点评 本题考查的知识点是函数奇偶性,函数的单调性,是函数图象和性质的简单综合应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=ax-1+logax在区间[1,2]上的最大值和最小值之和为a,则实数a为(  )
A.$\frac{1}{2}$B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=cos2x-sin2x+sin2x+1的最小正周期是π,振幅是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x<2,则$\sqrt{{x}^{2}-4x+4}$-|3-x|的值是.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z=2+i(i虚数单位),若$\frac{a}{z}+{z^2}∈R$,则实数a的值为(  )
A.4B.10C.20D.$-\frac{15}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,2),则cos(π-α)的值是-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知sin(α+$\frac{π}{3}$)=-$\frac{\sqrt{2}}{2}$,若α∈(-$\frac{4π}{3}$,-$\frac{5π}{6}$),则α=$-\frac{5π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知在△ABC中,向量$\overrightarrow{m}$=(-cosA,sinA),$\overrightarrow{n}$=(cosC,sinC),$\overrightarrow{m}$•$\overrightarrow{n}$=cos2B,若AC=6,且$\overrightarrow{BA}$•$\overrightarrow{BC}$=-18,则AB+AC等于(  )
A.3$\sqrt{2}$B.3$\sqrt{6}$C.12D.6$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等比数列{an},满足a1+a2+a3+a4+a5=2,$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+\frac{1}{{a}_{3}}+\frac{1}{{a}_{4}}+\frac{1}{{a}_{5}}$=$\frac{1}{2}$,则a3=(  )
A.-2B.2C.±2D.±4

查看答案和解析>>

同步练习册答案