精英家教网 > 高中数学 > 题目详情
双曲线
x2
a2
-
y2
b2
=1(a>1,b>0)的焦点距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(-1,0)到直线l的距离之和s≥
4
5
c
.求双曲线的离心率e的取值范围.
分析:直线l的方程是bx+ay-ab=0.点(1,0)到直线l的距离d1=
b(a-1)
a2+b2
,点(-1,0)到直线l的距离d2=
b(a+1)
a2+b2
s=d1+d2=
2ab
a2+b2
=
2ab
c
.由S≥
4
5
c
5a
c2-a2
≥2c2
.所以4e4-25e2+25≤0.由此可知e的取值范围.
解答:解:直线l的方程为
x
a
+
y
b
=1
,即bx+ay-ab=0.
由点到直线的距离公式,且a>1,得到点(1,0)到直线l的距离d1=
b(a-1)
a2+b2

同理得到点(-1,0)到直线l的距离d2=
b(a+1)
a2+b2
s=d1+d2=
2ab
a2+b2
=
2ab
c

s≥
4
5
c,得
2ab
c
4
5
c
,即5a
c2-a2
≥2c2

于是得5
e2-1
≥2e2
,即4e4-25e2+25≤0.解不等式,得
5
4
e2≤5

由于e>1>0,
所以e的取值范围是
5
2
≤e≤
5
点评:本题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)
的中心和左焦点,点P为双曲线右支上的任意一点,则
OP
FP
的取值范围为(  )
A、[3-2
3
,+∞)
B、[3+2
3
,+∞)
C、[-
7
4
,+∞)
D、[
7
4
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1(a>0)
的一条准线方程为x=
3
2
,则a等于
 
,该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆C的圆心为双曲线
x2
a2
-y2=1(a>0)
的左焦点,且与此双曲线的渐近线相切,若圆C被直线l:x-y+2=0截得的弦长等于
2
,则a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的一点,并且P点与右焦点F′的连线垂直x轴,则线段OP的长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1
的一个焦点坐标为(-
3
,0)
,则其渐近线方程为(  )
A、y=±
2
x
B、y=±
2
2
x
C、y=±2x
D、y=±
1
2
x

查看答案和解析>>

同步练习册答案