精英家教网 > 高中数学 > 题目详情

【题目】先后2次抛掷一枚骰子,将得到的点数分别记为

)求满足的概率;

)设三条线段的长分别为5,求这三条线段能围成等腰三角形(含等边三角形)的概率.

【答案】(

【解析】试题分析:()首先由a,b的值确定所有基本事件,由可得到满足条件的点,求其比值可得到概率值;()由等腰三角形分情况讨论可得到构成三角形的个数,从而求得相应的概率

试题解析:先后2次抛掷一枚骰子,将得到的点数分别记为包含的基本事件有:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(6,5)(6,6),共36个.………………………2

)由于

满足条件的情况只有,或两种情况. ……………4

满足的概率为…………………………………………5

三角形的一边长为5,三条线段围成等腰三角形,

时, ,共1个基本事件;

时, ,共1个基本事件;

时, ,共2个基本事件;

时, ,共2个基本事件;

时, ,共6个基本事件;

时, ,共2个基本事件;

满足条件的基本事件共有11226214个.…………………………11

三条线段能围成等腰三角形的概率为…………………………………12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面四边形中, ,将沿折起,使得平面平面,如图.

(1)求证:

(2)若中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为贯彻落实教育部等6部门《关于加快发展青少年校园足球的实施意见》,全面提高我市中学生的体质健康水平,普及足球知识和技能,市教体局决定矩形春季校园足球联赛,为迎接此次联赛,甲同学选拔了20名学生组成集训队,现统计了这20名学生的身高,记录如下表:

身高(

168

174

175

176

178

182

185

188

人数

1

2

4

3

5

1

3

1

(1)请计算20名学生的身高中位数、众数,并补充完成下面的茎叶图

(2)身高为185188的四名学生分别为先从这四名学生中选2名担任正副门将,请利用列举法列出所有可能情况,并求学生入选正门将的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数在定义域内的极值点的个数;

2)若函数处取得极值,且对恒成立,求实数的取值范围;

3)当时,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业开发一种新产品,现准备投入适当的广告费,对产品进行促销,在一年内,预计年销量Q(万件)与广告费x(万件)之间的函数关系为,已知生产此产品的年固定投入为3万元,每年产1万件此产品仍需要投入32万元,若年销售额为,而当年产销量相等。

(1)试将年利润P(万件)表示为年广告费x(万元)的函数;

(2)当年广告费投入多少万元时,企业年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记表示中的最大值,如,已知函数.

1)求函数上的值域;

2)试探讨是否存在实数, 使得恒成立?若存在,求的取值范围;

若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后2次抛掷一枚骰子,将得到的点数分别记为

)求满足的概率;

三条线段的长分别为5求这三条线段能围成等腰三角形(含等边三角形)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC角A,B,C的对边分别为a,b,c,cos C.

(1)·,求c的最小值;

(2)设向量x=(2sin B,-),y=,且x∥y,求sin(B-A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天气预报显示,在今后的三天中,每一天下雨的概率为40%,现用随机模拟的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0--9之间整数值的随机数,并制定用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

则这三天中恰有两天下雨的概率近似为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案