精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面是边长为2的菱形,底面.

1)求证:平面

2)若,直线与平面所成的角为,求四棱锥的体积.

【答案】1)证明见解析;(2

【解析】

1)通过ACBDPDAC可得平面

2)由题先得出∠PBD是直线PB与平面ABCD所成的角,即∠PBD=45°,则可先求出菱形ABCD的面积,进而可得四棱锥P- ABCD的体积.

解:(1)因为四边形ABCD是菱形,所以ACBD

又因为PD⊥平面ABCD平面ABCD

所以PDAC,又

AC⊥平面PBD

2)因为PD⊥平面ABCD

所以∠PBD是直线PB与平面ABCD所成的角,

于是∠PBD=45°,

因此BD=PD=2.AB= AD=2

所以菱形ABCD的面积为

故四棱锥P- ABCD的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,PA平面ABCD,EB//PA,AB=PA=4,EB=2,F为PD的中点.

(1)求证AFPC

(2)BD//平面PEC

(3)求二面角D-PC-E的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱椎中,底面是边长为4的正方形,平面平面,二面角 .

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,底面为边长为2的菱形,平面分别是的中点.

(1)判定是否垂直,并说明理由;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)若在区间上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的右焦点,点在椭圆上.

(1)求椭圆的方程;

(2)过原点的直线与椭圆交于两点(不是椭圆的顶点),点在椭圆上,且,直线轴,轴分别交于两点.

(ⅰ)设直线斜率分别为,求的值;

(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设中心在原点,焦点在轴上的椭圆过点,且离心率为的右焦点,上一点,轴,的半径为

1)求的方程;

2)若直线交于两点,与交于两点,其中在第一象限,是否存在使?若存在,求的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次考试后,对全班同学的数学成绩进行整理,得到表:

分数段

人数

5

15

20

10

将以上数据绘制成频率分布直方图后,可估计出本次考试成绩的中位数是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018届安徽省蚌埠市高三上学期第一次教学质量检查】为监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取10件零件,度量其内径尺寸(单位: .根据长期生产经验,可以认为这条生产线正常状态下生产的零件的内径尺寸服从正态分布.

1)假设生产状态正常,记表示某一天内抽取的10个零件中其尺寸在之外的零件数,求的数学期望;

2)某天正常工作的一条生产线数据记录的茎叶图如下图所示:

①计算这一天平均值与标准差

②一家公司引进了一条这种生产线,为了检查这条生产线是否正常,用这条生产线试生产了5个零件,度量其内径分别为(单位: ):85,95,103,109,119,试问此条生产线是否需要进一步调试,为什么?

参考数据:

.

查看答案和解析>>

同步练习册答案