精英家教网 > 高中数学 > 题目详情
A为三角形ABC的一个内角,若sinA+cosA=
2
5
,则这个三角形的形状为(  )
A、锐角三角形
B、钝角三角形
C、等腰直角三角形
D、等腰三角形
分析:把已知等式两边平方,结合同角正余弦关系,判定cosA的符合,则确定三角形的形状.
解答:解:将sinA+cosA=
2
5
两边平方,得sin2A+2sinAcosA+cos2A=
4
25

2sinAcosA=
4
25
-1=-
21
25
<0

又∵0<A<π,则sinA>0,
∴cosA<0,即A为钝角,
∴△ABC为钝角三角形.
故选B.
点评:本题考查同角正余弦关系及正余弦函数在第一、二象限的符号特征.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l1与l2平行,点A是这两直线之间的一定点,且点A到这两直线的距离分别为3和2,以A为直角顶点的直角三角形另两顶点B、C分别在直线l1、l2上,则当B、C运动时,直角三角形ABC面积的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知直角三角形ABC的斜边长AB=2,现以斜边AB为轴旋转一周,得旋转体.
(1)当∠A=30°时,求此旋转体的体积;
(2)比较当∠A=30°、∠A=45°时,两个旋转体表面积的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江二模)如图,已知平面上直线l1∥l2,A、B分别是l1、l2上的动点,C是l1,l2之间一定点,C到l1的距离CM=1,C到l2的距离CN=
3
,△ABC内角A、B、C所对 边分别为a、b、c,a>b,且bcosB=acosA
(1)判断三角形△ABC的形状;
(2)记∠ACM=θ,f(θ)=
1
AC
+
1
BC
,求f(θ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头一模)等边三角形ABC的三个顶点在一个半径为1的球面上,O为球心,G为三角形ABC的中心,且OG=
3
3
.则△ABC的外接圆的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•成都一模)如图,设A、B、C是球O面上的三点,我们把大圆的劣弧
BC
CA
AB
在球面上围成的部分叫做球面三角形,记作球面三角形ABC,在球面三角形ABC中,OA=1,设
BC
=a,
CA
=b,
AB
=c,a,b.c∈(0,π)
,二面角B-OA-C、
C-OB-A、A-OC-B的大小分别为α、β、γ,给出下列命题:
①若α=β=γ=
π
2
,则球面三角形ABC的面积为
π
2

②若a=b=c=
π
3
,则四面体OABC的侧面积为
π
2

③圆弧
AB
在点A处的切线l1与圆弧
CA
在点A处的切线l2的夹角等于a;
④若a=b,则α=β.
其中你认为正确的所有命题的序号是
①②④
①②④

查看答案和解析>>

同步练习册答案