分析 (Ⅰ)n=1时,a1=S1,可得n>1,an=Sn-Sn-1,化简整理,结合等比数列的定义,即可得证;
(Ⅱ)${b_n}=(3n-2)(-20•{2^{n-1}}+10)$=(-30n+20)(2n-1),运用数列的求和方法:分组求和和错位相减法,结合等差数列和等比数列的求和公式,即可得到所求和.
解答 解:(Ⅰ)证明:n=1时,a1=S1,由${a_1}=\frac{1}{2}{S_1}-5$,得a1=-10,
${a}_{n}=\frac{1}{2}{S}_{n}-5n(n≥1)$且n∈N*①
${a_{n-1}}=\frac{1}{2}{S_{n-1}}-5(n-1)(n≥2$且n∈N*)②
由①-②得,${a_n}-{a_{n-1}}=\frac{1}{2}{a_n}-5n+5(n-1)(n≥2$且n∈N*)
整理得an=2an-1-10,
∴$\frac{{{a_n}-10}}{{{a_{n-1}}-10}}=2(n≥2$且n∈N*),
∴{an-10}为等比数列,首项a1-10=-20,公比为2.
∴${a_n}-10=-20•{2^{n-1}}$即${a_n}=-20•{2^{n-1}}+10$.
(Ⅱ)${b_n}=(3n-2)(-20•{2^{n-1}}+10)$=(-30n+20)(2n-1),${T_n}=-10×(2-1)-40×({2^2}-1)-70×({2^3}-1)+…+(-30n+20)({2^n}-1)$
=-10[1×2+4×22+7×23+…+(3n-2)2n]+[10+40+70+…+(30n-20)]
=-10[1×2+4×22+7×23+…+(3n-2)2n]+(15n-5)n,
令${M_n}=1×2+4×{2^2}+7×{2^3}+…+(3n-2){2^n}$③
$2{M_n}=1×{2^2}+4×{2^3}+…+(3n-5){2^n}+(3n-2){2^{n+1}}$④
由③-④得,$-{M_n}=1×2+3({2^2}+{2^3}+…+{2^n})-(3n-2){2^{n+1}}$,
$-{M_n}=2+\frac{{3×4(1-{2^{n-1}})}}{1-2}-(3n-2){2^{n+1}}$=-10-(3n-5)•2n+1,
${M_n}=10+(3n-5){2^{n+1}}$.
即${T_n}=-100-10(3n-5){2^{n+1}}+(15n-5)n$.
点评 本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的通项和前n项和的关系,考查数列的求和方法:错位相减法和分组求和,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | (0,1) | B. | [0,1) | C. | (0,1] | D. | [0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2或0 | B. | 0或1 | C. | ±1 | D. | ±2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $18,\frac{2}{3}$ | B. | $18,\frac{1}{3}$ | C. | $12,\frac{2}{3}$ | D. | $12,\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com