在如图所示的几何体中,四边形为正方形,四边形为等腰梯形,,,,.
(1)求证:平面;
(2)求四面体的体积;
(3)线段上是否存在点,使平面?请证明你的结论.
(1)详见解析;(2);(3)详见解析.
解析试题分析:(1)利用勾股定理得到,再结合并利用直线与平面垂直的判定定理证明平面;(2)先证明平面,从而得到为三棱锥的高,并计算的面积作为三棱锥的底面积。最后利用锥体的体积公式计算四面体的体积;(3)连接交于点,根据平行四边形的性质得到为的中点,然后取的中点,构造底边的中位线,得到,结合直线与平面平行的判定定理得到平面.
试题解析:(1)在中,因为,,,,
,
又因为,且,平面,平面,平面;
(2)因为平面,且平面,,
又,且,平面,平面,
平面,即为三棱锥的高,
在等腰梯形中可得,所以,
的面积为,
所以四面体的体积为;
(3)线段上存在点,且为的中点时,有平面,
证明如下:连接,与交于点,连接,
四边形为正方形,所以
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,底面为矩形,.
(1)求证,并指出异面直线PA与CD所成角的大小;
(2)在棱上是否存在一点,使得?如果存在,求出此时三棱锥与四棱锥的体积比;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图在三棱柱ABC-A1B1C1中,AB⊥AC,顶点A1在底面ABC上的射影恰为点B,且AB=AC=A1B=2.
(1)证明:平面A1AC⊥平面AB1B;
(2)若点P为B1C1的中点,求三棱锥P-ABC与四棱锥P-AA1B1B的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点.
(1)求证:平面;
(2)求证:平面;
(3)设,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥PABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.
(1)当正视方向与向量的方向相同时,画出四棱锥PABCD的正视图(要求标出尺寸,并写出演算过程);
(2)若M为PA的中点,求证:DM∥平面PBC;
(3)求三棱锥DPBC的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com