A. | $\frac{4}{5}$ | B. | $-\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | $-\frac{3}{5}$ |
分析 由题意求得tanα的值,再利用同角三角函数的基本关系,二倍角公式,求得cos2α的值.
解答 解:∵tanα-$\frac{1}{tanα}=\frac{3}{2},α∈({\frac{π}{4},\frac{π}{2}})$,∴tanα=2,
则cos2α=$\frac{{cos}^{2}α{-sin}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{1{-tan}^{2}α}{{tan}^{2}α+1}$=$\frac{1-4}{4+1}$=-$\frac{3}{5}$,
故选:D.
点评 本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 有最大值为$\frac{2}{3}$,无最小值 | B. | 有最大值为$-\frac{1}{3}$,无最小值 | ||
C. | 有最小值为$-\frac{1}{3}$,无最大值 | D. | 有最小值为$\frac{2}{3}$,无最大值 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $[{0,\frac{1}{2}})$ | B. | [0,1] | C. | $({\frac{1}{2},1}]$ | D. | $({\frac{1}{2},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,3) | B. | (0,3) | C. | $({0,\frac{3}{2}})$ | D. | $({\frac{3}{2},3})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=-$\frac{1}{2}$ | B. | x=-$\frac{1}{8}$ | C. | y=$\frac{1}{2}$ | D. | x=$\frac{1}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com