精英家教网 > 高中数学 > 题目详情
3.已知直线l1:x+y-2=0,直线l2过点A(-2,0)且与直线l1平行.
(1)求直线l2的方程;
(2)点B在直线l1上,若|AB|=4,求点B的坐标.

分析 (1)由题意得l1的斜率为-1,即可求直线l2的方程;
(2)设B(x0,y0),则由点B在直线l1上得,x0+y0-2=0①,由|AB|=4得,$\sqrt{{{({{x_0}+2})}^2}+{y_0}^2}=4$②,联立①②,求点B的坐标.

解答 解:(1)由题意得l1的斜率为-1,…(2分)
则直线l2的方程为y+2=-x即x+y+2=0.…(5分)
(2)设B(x0,y0),则由点B在直线l1上得,x0+y0-2=0①…(7分)
由|AB|=4得,$\sqrt{{{({{x_0}+2})}^2}+{y_0}^2}=4$②…(10分)
联立①②解得,$\left\{\begin{array}{l}{x_0}=2\\{y_0}=0\end{array}\right.$或$\left\{\begin{array}{l}{x_0}=-2\\{y_0}=4\end{array}\right.$
即点B的坐标为B(2,0)或B(-2,4).…(14分)

点评 本题考查直线方程,考查直线与直线的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图四边形PABC中,∠PAC=∠ABC=90°,$PA=AB=2\sqrt{3},AC=4$,现把△PAC沿AC折起,使PA与平面ABC成60°,设此时P在平面ABC上的投影为O点(O与B在AC的同侧),

(1)求证:OB∥平面PAC;
(2)求二面角P-BC-A大小的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图1,在Rt△ABC中,∠ABC=60°,AD是斜边BC上的高,沿AD将△ABC折成60°的二面角B-AD-C,如图2.
(1)证明:平面ABD⊥平面BCD;
(2)在图2中,设E为BC的中点,求异面直线AE与BD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知长为2的线段A B两端点A和B分别在x轴和y轴上滑动,线段AB的中点M的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)点P(x,y)是曲线C上的动点,求3x-4y的取值范围;
(Ⅲ)已知定点Q(0,$\frac{2}{3}$),探究是否存在定点T(0,t)(t$≠\frac{2}{3}$)和常数λ满足:对曲线C上任意一点S,都有|ST|=λ|SQ|成立?若存在,求出t和λ;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设点F1、F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点(O为坐标原点),以O为圆心,|F1F2|为直径的圆交双曲线于点M(第一象限).若过点M作x轴的垂线,垂足恰为线段OF2的中点,则双曲线的离心率是(  )
A.$\sqrt{3}$-1B.$\sqrt{3}$C.$\sqrt{3}$+1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=ax+1(a>0,a≠1)的图象必经过点(  )
A.(0,1)B.(1,0)C.(0,2)D.(2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若幂函数f(x)=xa(a∈R)的图象过点(2,$\sqrt{2}$),则a的值是$\frac{1}{2}$,函数f(x)的递增区间是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,若对一切n∈N*都有an=-3an+1,且$\lim_{n→∞}({a_2}+{a_4}+{a_6}+…+{a_{2n}})$=$\frac{9}{2}$,则a1的值为 -12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.马路有五个路灯,为节约用电又看清路面,可以把其中的一只灯关掉,在两端的灯不能关掉的情况下,满足条件的关灯方法有3种.

查看答案和解析>>

同步练习册答案