精英家教网 > 高中数学 > 题目详情
3.函数$f(x)=({x-\frac{π}{2}})sinx$在[-2π,2π]上的大致图象是(  )
A.B.C.D.

分析 取x为非常小的锐角和非常接近2π(小于2π)的角,结合图象排除即可.

解答 解:当x为非常小的锐角时,(x-$\frac{π}{2}$)<0,sinx>0,
∴f(x)=(x-$\frac{π}{2}$)sinx<0,排除B、D;
当x为非常接近2π(小于2π)的角时,(x-$\frac{π}{2}$)>0,sinx<0,
∴f(x)=(x-$\frac{π}{2}$)sinx<0,排除A,
故选:C

点评 本题考查正弦函数的图象,取特殊点排除是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.1~100中所有奇数的和为(  )
A.99B.1250C.2500D.2525

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,右焦点为(2$\sqrt{2}$,0),过点P(-2,1)斜率为1的直线l与椭圆C交于A,B两点.
(1)求椭圆C的方程;
(2)求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“x-3=0”是“(x-3)(x+4)=0”的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既不充分又不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知椭圆$\frac{x^2}{16}+\frac{y^2}{9}$=1及以下3个函数:①f(x)=x;②f(x)=sinx;③f(x)=xsinx,其中函数图象能等分该椭圆面积的函数个数有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若变量x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≤4\\ y≥1\end{array}\right.$,则z=$\frac{1}{2}$x+y的取值范围为(  )
A.$[\frac{3}{2},3]$B.$[\frac{3}{2},\frac{5}{2}]$C.$[\frac{5}{2},3]$D.$[\frac{3}{2},5]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$.
(1)判断f(x)的奇偶性;
(2)判断f(x)在R上的单调性,并探究是否存在实数t,使不等式f(x)+f(x2-t2)≥0对一切x∈[1,2]恒成立?若存在,求出t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点M(1,0),直线l:x-2y-2=0;则过点M且与直线l平行的直线方程为x-2y-1=0;以M为圆心且被l截得的弦长为$\frac{4}{5}\sqrt{5}$的圆的方程是$(x-1)^{2}+{y}^{2}=\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的图象的相邻两对称中心的距离为$\frac{π}{2}$,且过点($\frac{π}{8}$,-1).
(1)求函数f(x)的解析式;
(2)五点作图法画出函数f(x)在长度为一个周期的闭区间上的简图;
(3)求方程f(x)-2=m在x∈[$\frac{π}{4}$,$\frac{2π}{3}$]上有解,求m的范围.

查看答案和解析>>

同步练习册答案