精英家教网 > 高中数学 > 题目详情

【题目】已知函数 为常数).

() 函数的图象在点处的切线与函数的图象相切,求实数的值;

(Ⅱ) 若 ,且,都有成立,求实数的值.

【答案】(Ⅰ);(Ⅱ) .

【解析】试题分析:(利用导数求出函数的图象在点处的切线方程,再由直线与函数的图象相切的关系联立方程组求出的值()依题意不妨设根据对数函数及二次函数的性质可判断的单调性可把等价转化为,等价于,再构造函数,即等价于 在区间上是增函数,利用导数与函数单调性的关系,结合不等式恒成立的条件,即可求得实数的值.

试题解析:(

,则

∴函数的图象在点处的切线方程为

.

,得.(还可以通过导数来求

(Ⅱ)不妨设

∵函数在区间上是增函数,

∵函数图象的对称轴为,且.

∴当时,函数在区间上是减函数,

等价于

等价于 在区间上是增函数,

等价于在区间上恒成立,

等价于在区间上恒成立

又∵

点睛: 本题主要考查导数的应用,包括导数的几何意义,导数与单调性,属于中档题.本题在第2问中注意解题思想:等价转换,将原不等式转化为求上为增函数,等价于在区间上恒成立,分离出,转化为求上的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ),且曲线在点处的切线方程为

1)求实数的值及函数的最大值;

2时,记函数的最小值为,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,点M的坐标为,曲线C的方程为;以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,斜率为的直线l经过点M

(I)求直线l和曲线C的直角坐标方程:

(II)P为曲线C上任意一点,直线l和曲线C相交于AB两点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为抛物线上存在一点 到焦点的距离等于

(1)求抛物线的方程;

(2)过点的直线与抛物线相交于两点(两点在轴上方),点关于轴的对称点为,且,求的外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆C:a>b>0的左、右焦点分别为F1F2,P为椭圆上一点(在x轴上方),连结PF1并延长交椭圆于另一点Q,设λ

(1)若点P的坐标为1,PQF2的周长为8,求椭圆C的方程;

(2)若PF2垂直于x轴,且椭圆C的离心率e[],求实数λ的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1求函数的单调区间;

2若不等式区间上恒成立,求实数的取值范围;

3求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,右顶点为,离心离为,点满足条件

Ⅰ)求的值.

Ⅱ)设过点的直线与椭圆相交于两点,记的面积分别为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在D上的函数,若对D中的任意两数),恒有,则称为定义在D上的C函数.

(1)试判断函数是否为定义域上的C函数,并说明理由;

(2)若函数R上的奇函数,试证明不是R上的C函数;

(3)是定义在D上的函数,若对任何实数以及D中的任意两数),恒有,则称为定义在D上的π函数. 已知R上的π函数,m是给定的正整数,,,. 对于满足条件的任意函数,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 是曲线与直线 )的交点(异于原点).

(1)写出 的直角坐标方程;

(2)求过点和直线垂直的直线的极坐标方程.

查看答案和解析>>

同步练习册答案