精英家教网 > 高中数学 > 题目详情

【题目】如图在平行四边形中,,以为折痕将△折起,使点到达点的位置,且

1)证明:平面平面

2为线段上一点,为线段上一点,且,求三棱锥的体积.

【答案】(1)见解析.

(2)1.

【解析】分析:(1)首先根据题的条件可以得到=90,再结合已知条件BAAD利用线面垂直的判定定理证得AB⊥平面ACD又因为AB平面ABC根据面面垂直的判定定理,证得平面ACD⊥平面ABC

(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.

详解:(1)由已知可得=90°,

BAAD所以AB⊥平面ACD

AB平面ABC

所以平面ACD⊥平面ABC

(2)由已知可得DC=CM=AB=3,DA=

所以

QEAC垂足为E

由已知及(1)可得DC⊥平面ABC所以QE⊥平面ABCQE=1.

因此三棱锥的体积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,侧棱底面棱的中点.

(1)证明

(2)求二面角的余弦值;

(3)设点在线段上,且直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司计划投资两种金融产品,根据市场调查与预测,产品的利润与投资金额的函数关系为产品的利润与投资金额的函数关系为.(注:利润与投资金额单位:万元)

(1)该公司已有100万元资金,并全部投入两种产品中,其中万元资金投入产品,试把两种产品利润总和表示为的函数,并写出定义域;

(2)试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?

【答案】(1);(2)20,28.

【解析】

1)设投入产品万元,则投入产品万元,根据题目所给两个产品利润的函数关系式,求得两种产品利润总和的表达式.2)利用基本不等式求得利润的最大值,并利用基本不等式等号成立的条件求得资金的分配方法.

(1)其中万元资金投入产品,则剩余的(万元)资金投入产品,

利润总和为:

(2)因为

所以由基本不等式得:,

当且仅当时,即:时获得最大利润28万.

此时投入A产品20万元,B产品80万元.

【点睛】

本小题主要考查利用函数求解实际应用问题,考查利用基本不等式求最大值,属于中档题.

型】解答
束】
20

【题目】已知曲线.

(1)求曲线在处的切线方程;

(2)若曲线在点处的切线与曲线相切,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了改善居民的休闲娱乐活动场所,现有一块矩形草坪如下图所示,已知:米,米,拟在这块草坪内铺设三条小路,要求点的中点,点在边上,点在边时上,且.

1)设,试求的周长关于的函数解析式,并求出此函数的定义域;

2)经核算,三条路每米铺设费用均为元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为菱形,且 中点.

(Ⅰ)证明: 平面

(Ⅱ)若 ,求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,函数恒有意义,求实数的取值范围;

(2)是否存在这样的实数,使得函数fx)在区间上为减函数,并且最大值为?如果存在,试求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,数列是等比数列,且满足 .

(1)求数列的通项公式;

(2)数列的前项和为,若对一切正整数都成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,椭圆C的方程为,以为极点, 轴的非负半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为

(1)求直线的直角坐标方程;

(2)设为椭圆上任意一点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an} 和等比数列{bn}满足a1b1=1,a2a4=10,b2b4a5.

(1)求{an}的通项公式;

(2)求和:b1b3b5+…+b2n-1.

查看答案和解析>>

同步练习册答案