精英家教网 > 高中数学 > 题目详情
4.平面内有n(n∈N*)个圆中,每两个圆都相交,每三个圆都不交于一点,若该n个圆把平面分成f(n)个区域,那么f(n)=n2-n+2.

分析 根据题意,分析可得,f(n)-f(n-1)=2×(n-1),进而可得f(3)-f(2)=2×2,f(4)-f(3)=2×3,…f(n)-f(n-1)=2×(n-1),将这些式子相加可得:f(n)-f(2)=2×2+2×3+2×4+…+2×n=n(n+1),进而可得f(n),即可得答案.

解答 解:分析可得,n-1个圆可以将平面分为f(n-1)个区域,n个圆可以将平面分为f(n)个区域,
增加的这个圆即第n个圆与每个圆都相交,可以多分出2(n-1)个区域,
即f(n)-f(n-1)=2×(n-1),
则有f(3)-f(2)=2×2,
f(4)-f(3)=2×3,
f(5)-f(4)=2×4,
f(6)-f(5)=2×5,

f(n)-f(n-1)=2×(n-1),
将这些式子相加可得:f(n)-f(2)=2×2+2×3+2×4+…+2×n=n(n+1),
f(n)=2+(n-1)n=n2-n+2
故答案为:n2-n+2.

点评 本题主要考查归纳推理的运用,关键要根据题意,分析出每增加一个圆,可以多分出几个区域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,1),
(1)当k为何值时,k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{b}$垂直?
(2)若$\overrightarrow{AB}$=2$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{BC}$=$\overrightarrow{a}$+m$\overrightarrow{b}$且A、B、C三点共线,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对应的边为a,b,c,且$cos(\frac{π}{3}-A)=2cosA$.
(1)求A的值;
(2)若△ABC的面积S=$\frac{{\sqrt{3}}}{2}{c^2}$,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在等比数列{an}中,a1=1,且a2是a1与a3-1的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足${b_n}=\frac{{1+n(n+1){a_n}}}{n(n+1)}(n∈{N^*})$.求数列{bn}的前n项和$S_n^{\;}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.1443与999的最大公约数是111.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.等差数列{an},{bn}的前n项和分别为Sn,Tn,若$\frac{S_n}{T_n}=\frac{2n}{3n+1}$,则$\frac{{{a_{10}}}}{{{b_{10}}}}$=$\frac{19}{29}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°,M为BB1的中点,N为BC的中点.
(1)求点M到直线AC1的距离;
(2)求点N到平面MA1C1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$y=\sqrt{1+2x}+\sqrt{1-2x}$的值域为(  )
A.$[{1,\sqrt{2}}]$B.[2,4]C.$[{\sqrt{2},2}]$D.$[{1,\sqrt{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在公比小于零的等比数列{an中,若a1=2,a3=8,这数列{an}的前三项和S3=6.

查看答案和解析>>

同步练习册答案