精英家教网 > 高中数学 > 题目详情

【题目】下列命题正确的是__________.(写出所有正确命题的序号)

①已知,“”是“”的充要条件;

②已知平面向量,“”是“”的必要不充分条件;

③已知,“”是“”的充分不必要条件;

④命题:“,使”的否定为:“,都有

【答案】

【解析】对于①, ,由不等式的性质可以得到,而由不能得到,比如 ,所以①错误的; 对于②,若,不能得出,比如,两向量同向,所以②错误; 对于③, ,表示的是在单位圆外面部分(包括边界),而表示的是以原点为中心,对角线长为的正方形外面(包括边界),由于正方形在单位圆的内部,所以可以得出,而不能得出,所以③是正确的;对于④,命题P的否定是“ 都有”,所以④是错误的.正确的只有③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,点在椭圆上, 为坐标原点.

(1)求椭圆的方程;

(2)已知点为椭圆上的三点,若四边形为平行四边形,证明:四边形的面积为定值,并求该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行右侧的程序框图,当输入的x的值为4时,输出的y的值2,则空白判断框中的条件可能为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)若上存在极值点,求的取值范围;

(2)设 ,若存在最大值,记为,则当时, 是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机生产企业为了解消费者对某款手机功能的认同情况,通过销售部随机抽取50名购买该款手机的消费者,并发出问卷调查(满分50分),该问卷只有30份给予回复,这30份的评分如下:

(Ⅰ)完成下面的茎叶图,并求16名男消费者评分的中位数与14名女消费者评分的平均值;

(Ⅱ)若大于40分为“满意”,否则为“不满意”,完成上面的列联表,并判断是否有的把握认为消费者对该款手机的“满意度”与性别有关.

参考公式: ,其中

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,短轴的一个端点为.过椭圆左顶点的直线与椭圆的另一交点为.

(1)求椭圆的方程;

(2)若与直线交于点,求的值;

(3)若,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学课上,老师为了提高同学们的兴趣,先让同学们从1到3循环报数,结果最后一个同学报2;再让同学们从1到5循环报数,最后一个同学报3;又让同学们从1到7循报数,最后一个同学报4.请你设计一个算法,计算这个班至少有多少人,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究一种昆虫的产卵数和温度是否有关,现收集了7组观测数据列于下表中,并作出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈线性相关关系,现分别用模型①:与模型②:作为产卵数和温度的回归方程来建立两个变量之间的关系.

温度

20

22

24

26

28

30

32

产卵数/个

6

10

21

24

64

113

322

400

484

576

676

784

900

1024

1.79

2.30

3.04

3.18

4.16

4.73

5.77

26

692

80

3.57

1157.54

0.43

0.32

0.00012

其中

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: .

(1)在答题卡中分别画出关于的散点图、关于的散点图,根据散点图判断哪一个模型更适宜作为回归方程类型?(给出判断即可,不必说明理由).

(2)根据表中数据,分别建立两个模型下建立关于的回归方程;并在两个模型下分别估计温度为时的产卵数.(与估计值均精确到小数点后两位)(参考数据:

(3)若模型①、②的相关指数计算得分分别为 ,请根据相关指数判断哪个模型的拟合效果更好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)讨论的单调性;

(Ⅱ)设,证明:当时,

(Ⅲ)设的两个零点,证明 .

查看答案和解析>>

同步练习册答案