精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=x2-x,等差数列{an}中,a1=f(x+1),a2=1,a3=f(x).
(1)求数列{an}的通项公式an
(2)当数列{an}是递减数列时,求|a1|+|a2|+|a3|+…+|a20|的值.

分析 (1)由题意结合等差中项的概念求得x,分类求出首项和公差,代入等差数列的通项公式得答案;
(2)由数列{an}是递减数列可得an=3-n,由此求出等差数列前3项非负,去绝对值后结合等差数列的前n项和求得|a1|+|a2|+|a3|+…+|a20|的值.

解答 解:(1)∵f(x)=x2-x,等差数列{an}中,a1=f(x+1)=(x+1)2-(x+1)=x2+x,a2=1,a3=f(x)=x2-x,
∴2×1=x2+x+x2-x=2x2,即x=±1.
当x=-1时,a1=0,公差d=a2-a1=1,∴an=n-1;
当x=1时,a1=2,公差d=a2-a1=1-2=-1,∴an=2+(n-1)×(-1)=3-n.
(2)∵数列{an}是递减数列,∴an=3-n,
由an=3-n≥0,得n≤3.
∴|a1|+|a2|+|a3|+…+|a20|=a1+a2+a3-(a4+a5+…+a20
=2(a1+a2+a3)-(a1+a2+…+a20)=2(2+1+0)-20×2+$\frac{20×19×(-1)}{2}$=-224.

点评 本题考查数列的函数特性,考查了等差数列的通项公式和前n项和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知三点A(1,1)、B(5,3)、C(2,5).
(1)求直线AB上的中线l及AC边上的高所在的直线方程;
(2)设M是直线x+y-3=0上任意一点,求|MA|-|MB|取最大值时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知{an}满足下列条件,写出前5项,数列的一个通项公式.
(1)a1=2,an+1=3an+2;
(2)a1=2,an+1=3an+3
(3)a1=1,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$;
(4)a1=2,an+1=3an2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若关于x的不等式ax2-4x+4a>0在x>0时恒成立,则实数a的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=x2-3x.若对于区间[-3,2]上任意的x1、x2.都有|f(x1)-f(x2)|≤m,则实数m的最小值是$\frac{81}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.作出下列函数的图象:
(1)y=2x+2
(2)y=|lgx|;
(3)y=($\frac{1}{2}$)|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D,使得$\frac{f({x}_{1})+f({x}_{2})\;}{2}$=C,则称函数f(x)在D上的均值为c.已知f(x)=lnx,x∈[1,e2],则函数f(x)=lnx在x∈[1,e2]上的均值为(  )
A.$\frac{1}{2}$B.1C.eD.$\frac{1+{e}^{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.判断下列各题中的向量$\overrightarrow{a}$,$\overrightarrow{b}$是否共线:
(1)$\overrightarrow{a}$=4$\overrightarrow{{e}_{1}}$-$\frac{2}{5}$$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$一$\frac{1}{10}$$\overrightarrow{{e}_{2}}$;
(2)$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,且$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=ax3-6x2+b(a≠0),在[1,2]上单调递增,且最大值为1.
(1)求实数a和b的取值范围;
(2)当a取最小值时,试判断方程f(x)=24x的根的个数.

查看答案和解析>>

同步练习册答案