精英家教网 > 高中数学 > 题目详情
一个口袋中装有大小相同的2个白球和4个黑球,要从中摸出两个球.
(Ⅰ)采取放回抽取方式,求摸出两球颜色恰好不同的概率;
(Ⅱ)采取不放回抽取方式,记摸得白球的个数为ξ,试求ξ的分布列,并求它的期望和方差.(方差Dξ=
n
i=1
pi(ξi-Eξ)2
(Ⅰ)解法一:“有放回摸两次,颜色不同”指“先白再黑”或“先黑再白”,
记“有放回摸球两次,两球恰好颜色不同”为事件A,…(2分)
∵“两球恰好颜色不同”共2×4+4×2=16种可能,…(4分)
P(A)=
16
6×6
=
4
9
.…(6分)
解法二:“有放回摸取”可看作独立重复实验,…(2分)
∵每次摸出一球得白球的概率为P=
2
6
=
1
3
.…(4分)
∴“有放回摸两次,颜色不同”的概率为P2(1)=
C12
•p•(1-p)=
4
9
.…(6分)
(Ⅱ)设摸得白球的个数为ξ,依题意得:
P(ξ=0)=
4
6
×
3
5
=
2
5
P(ξ=1)=
4
6
×
2
5
+
2
6
×
4
5
=
8
15
P(ξ=2)=
2
6
×
1
5
=
1
15
.…(9分)
∴它的分布列为
ξ012
P
2
5
8
15
1
15
Eξ=0×
1
2
+1×
8
15
+2×
1
15
=
2
3
,…(12分)Dξ=(0-
2
3
)2×
2
5
+(1-
2
3
)2×
8
15
+(2-
2
3
)2×
1
15
=
16
45
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

同时抛两枚均匀的硬币10次,设两枚硬币出现不同面的次数为X,则DX=(    )
A.B.C.D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

袋中有3个红球,7个白球。从中无放回的任取5个,取到几个红球就得几分,则得分的均值是:          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某小学五年级一次考试中,五名同学的语文、英语成绩如表所示:
学生A1A2A3A4A5
语文(x分)8991939597
英语(y分)8789899293
(1)请在如图的直角坐标系中作出这些数据的散点图,并求出这些数据的回归方程;
(2)要从4名语文成绩在90分以上的同学中选2人参加一项活动,以X表示选中的同学的英语成绩高于90分的人数,求随机变量X的分布列及数学期望E(X)的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

两封信随机投入A,B,C三个空邮箱,则A邮箱的信件数ξ的数学期望Eξ=(  )
A.
1
3
B.
2
3
C.
1
2
D.
3
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某电视台综艺频道组织的闯关游戏,游戏规定前两关至少过一关才有资格闯第三关,闯关者闯第一关成功得3分,闯第二关成功得3分,闯第三关成功得4分.现有一位参加游戏者单独闯第一关、第二关、第三关成功的概率分别为
1
2
1
3
1
4
,记该参加者闯三关所得总分为ζ.
(Ⅰ)求该参加者有资格闯第三关的概率;
(Ⅱ)求ζ的分布列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某突发事件一旦发生将造成400万元的损失.现有甲、乙两种相互独立的预防措施可供采用,单独采用甲措施的费用为45万元,采用甲措施后该突发事件不发生的概率为0.9;单独采用乙措施的费用为30万元,采用乙措施后该突发事件不发生的概率为0.85.若预防方案允许甲、乙两种预防措施单独采用或联合采用,请确定使总费用最少的方案.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知随机变量X满足X~B(2,p),若P(X≥1)=
5
9
,则P(X=2)=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某车站每天都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律为
到站的时刻
8:10
9:10
8:30
9:30
8:50
9:50
概率



一旅客8:20到站,则它候车时间的数学期望为_______。(精确到分)

查看答案和解析>>

同步练习册答案