精英家教网 > 高中数学 > 题目详情

在如图所示的几何体中,四边形ABCD为正方形,为直角三角形,,且.

(1)证明:平面平面
(2)若AB=2AE,求异面直线BE与AC所成角的余弦值.

(1)详见解析;(2).

解析试题分析:(1)由已知可知AE⊥AB,又AE⊥AD,所以AE⊥平面ABCD,所以AE⊥DB,又ABCD为正方形,所以DB⊥AC,所以DB⊥平面AEC,而BD平面BED,故有平面AEC⊥平面BED.
(2)作DE的中点F,连接OF,AF,由于O是DB的中点,且OF∥BE,可知∠FOA或其补角是异面直线BE与AC所成的角;设正方形ABCD的边长为2,则,由于,AB=2AE,
可知,则,又,∴=,由余弦定理的推理∴∠FOA==,故异面直线BE与AC所成的角的余弦值为.
试题解析:(1)由已知有AE⊥AB,又AE⊥AD,
所以AE⊥平面ABCD,所以AE⊥DB,                    3分
又ABCD为正方形,所以DB⊥AC,                        4分
所以DB⊥平面AEC,BD面BED
故有平面AEC⊥平面BED.                                 6分
(2)作DE的中点F,连接OF,AF,

∵O是DB的中点,
∴OF∥BE,∴∠FOA或其补角是异面直线BE与AC所成的角。 8分
设正方形ABCD的边长为2
,     9分
,AB=2AE,
,∴                  10分
,∴=,∴∠FOA==
∴异面直线BE与AC所成的角的余弦值为 12分.
考点:1.直线与平面垂直的判定定理,平面与平面垂直的判定定理;2.异面直线成角;3.余弦定理的推论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

正三棱柱ABCA1B1C1中,已知AB=A1A,D为C1C的中点,O为A1B与AB1的交点.
 
(1)求证:AB1⊥平面A1BD;
(2)若点E为AO的中点,求证:EC∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,,平面外一条线段AB满足AB∥DE,AB,AB⊥AC,F是CD的中点.

(1)求证:AF∥平面BCE
(2)若AC=AD,证明:AF⊥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2ADADA1B1,∠BAD=60°.
 
(1)证明:AA1BD
(2)证明:CC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为梯形,,平面平面

(1)求证:平面
(2)求证:
(3)是否存在点,到四棱锥各顶点的距离都相等?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为矩形,AD 平面ABE,AE=EB=BC=2,F为CE上的点.且BF 平面ACE.

(1)求证:平面ADE平面BCE;
(2)求四棱锥E-ABCD的体积;
(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN平面DAE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.

(1)求证:直线AB1⊥平面A1BD.
(2)求二面角A-A1D-B正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在几何体中,点在平面ABC内的正投影分别为A,B,C,且,E为中点,

(1)求证;CE∥平面
(2)求证:求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:长方形所在平面与正所在平面互相垂直,分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点 
的位置,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案