精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为为椭圆的右焦点,且椭圆上的点到的距离的最小值为,过作直线交椭圆两点,点.

1)求椭圆的方程;

2)是否存在这样的直线,使得以为邻边的平行四边形为矩形?若存在,求出直线的斜率;若不存在,请说明理由.

【答案】12)存在;斜率为

【解析】

1)利用椭圆性质容易得和方程.
2)设直线方程,与椭圆方程联立,得根与系数关系,由垂直,数量积为0列方程求斜率可解.

解:(1)由题意得

可得

再结合,可得

∴椭圆方程为:

2)由(1)知,

若直线轴垂直,可得

此时

不垂直;

若直线轴不垂直,设

其方程为:

代入椭圆方程消去得,

解得.

故存在直线满足条件,此时的斜率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为,右顶点为,已知椭圆离心率为,过点且与轴垂直的直线被椭圆截得的线段长为3.

(Ⅰ)求椭圆的方程;

(Ⅱ)设过点的直线与椭圆交于点不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四面体ABCD的每个顶点都在球O的表面上,AB是球O的一条直径,AC=2,BC=4,现有下面四个结论:

①球O的表面积为20π;AC上存在一点M,使得ADBM;

③若AD=3,BD=4;④四面体ABCD体积的最大值为.

其中所有正确结论的编号是( )

A.①②B.②④C.①④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某公司月份研发费用(百万元)和产品销量 (万台)的具体数据:

研发费用(百万元)

产品销量(万台)

1)根据数据可知之间存在线性相关关系,用线性相关系数说明之间的相关性强弱程度

2)求出的线性回归方程(系数精确到),并估计当研发费用为(百万元)时该产品的销量.

参考数据:

参照公式:相关系数,其回归直线中的

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线的参数方程是为参数),圆的极坐标方程是.

1)求圆的直角坐标方程;

2)过直线上的一点作一条倾斜角为的直线与圆交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数,.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求的普通方程和的参数方程;

2)若直线与曲线相交于两点,且的面积为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是公差为的等差数列, 是公比为的等比数列,,正整数组.

(1)若,求的值;

(2)若数组中的三个数构成公差大于的等差数列,且,求的最大值.

(3)若,试写出满足条件的一个数组和对应的通项公式.(注:本小问不必写出解答过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为.

1)求椭圆的离心率;

2)设为坐标原点,为直线上一点,过的垂线交椭圆于.当四边形是平行四边形时,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,上一点,,现沿折起到的位置,并使平面,点边上,且满足.

(1)证明:平面

(2)若,求二面角的大小.

查看答案和解析>>

同步练习册答案