精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面,且

1)求证:

2)在线段上,是否存在一点,使得二面角的大小为45°,如果存在,求与平面所成角的正弦值,如果不存在,请说明理由.

【答案】(1)证明见解析;(2)

【解析】

(1)根据平面得出,再在梯形中利用勾股定理证明,进而得到平面即可.

(2)根据二面角的大小为,,,连接可得为二面角,计算可得中点.再利用等体积法求与平面所成角的正弦值即可.

(1)证明:由题四边形为直角梯形,,,..

平面,平面,.

,平面,平面,.

(2)设存在符合条件的点,过点,,连接.

,平面,平面,.

,,平面,为二面角.

.,则因为,.,所以,.

所以.

再考虑底面,易得,.

,.

.

,到平面的距离满足,解得..

与平面所成角的正弦值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中任取个数,从中任取个数,

1)能组成多少个没有重复数字的四位数?

2)若将(1)中所有个位是的四位数从小到大排成一列,则第个数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,对于,均有,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,若,且的图象相邻的对称轴间的距离不小于.

(1)求的取值范围.

(2)若当取最大值时, ,且在中, 分别是角的对边,其面积,求周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧棱底面,底面是直角梯形,,且是棱的中点 .

(Ⅰ)求证:∥平面

(Ⅱ)求平面与平面所成锐二面角的余弦值;

(Ⅲ)设点是线段上的动点,与平面所成的角为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,并且内切于定圆.

1)求动圆圆心的轨迹方程;

2)若上存在两个点,(1)中曲线上有两个点,并且三点共线,三点共线,,求四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一座小岛距离海岸线上最近的点P的距离是3 km,从点P沿海岸正东12 km处有一个渔村.

1)假设一个人驾驶的小船的平均速度为,步行的速度是.y(单位:h)表示他从小岛到渔村的时间,x(单位:km)表示此人将船停在海岸处AP点的距离.请将y表示为x的函数,并写出定义域;

2)在(1)的条件下,是否有一个停船的位置使得从小岛到渔村花费的时间最少?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)已知函数

(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;

(2)若函数f(x)在 上为单调增函数,求a的取值范围;

(3)设m,n为正实数,且m>n,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,命题对任意,不等式恒成立,命题存在,使不等式成立.

(1)若为真命题,求的取值范围;

(2)若为假,为真,求的取值范围.

查看答案和解析>>

同步练习册答案