精英家教网 > 高中数学 > 题目详情
4.设向量$\overrightarrow a=(2,1)$,$\overrightarrow b=(4,3)$,若向量λ$\overrightarrow a+μ\overrightarrow b$与向量$\overrightarrow c=(1,-1)$垂直,则λ+μ=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.0D.1

分析 根据题意,由$\overrightarrow{a}$、$\overrightarrow{b}$的坐标计算可得λ$\overrightarrow a+μ\overrightarrow b$=(2λ+4μ,λ+3μ),进而由向量λ$\overrightarrow a+μ\overrightarrow b$与向量$\overrightarrow c=(1,-1)$垂直,分析可得(λ$\overrightarrow a+μ\overrightarrow b$)•$\overrightarrow{c}$=0,化简即可得答案.

解答 解:根据题意,向量$\overrightarrow a=(2,1)$,$\overrightarrow b=(4,3)$,则λ$\overrightarrow a+μ\overrightarrow b$=(2λ+4μ,λ+3μ),
若向量λ$\overrightarrow a+μ\overrightarrow b$与向量$\overrightarrow c=(1,-1)$垂直,
则有(λ$\overrightarrow a+μ\overrightarrow b$)•$\overrightarrow{c}$=(2λ+4μ)-(λ+3μ)=0,
即λ+μ=0;
故选:C.

点评 本题考查平面向量的数量积运算,注意向量垂直与向量数量积的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如果函数f(x)为奇函数,当x<0时,f(x)=ln(-x)+3x,则曲线在点(1,3)处的切线方程为(  )
A.y+3=-2(x-1)B.y-3=2(x-1)C.y+3=4(x-1)D.y-3=4(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若向量$\overrightarrow{a}$=(3,m),$\overrightarrow{b}$=(2,-1),$\overrightarrow{a}$•$\overrightarrow{b}$=0,则实数m的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等差数列{an}中,若a4+a6+a8+a10=80,则a1+a13的值为(  )
A.20B.40C.60D.80

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=x2-$\frac{1}{2}$lnx+1在其定义域内的一个子区间(a-2,a+2)内不是单调函数,则实数a的取值范围[2,$\frac{5}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow a=(2cosx,2sinx)$,$\overrightarrow b=(sin(x-\frac{π}{6}),cos(x-\frac{π}{6}))$,函数f(x)=cos<$\overrightarrow{a}$,$\overrightarrow{b}$>.
(Ⅰ)求函数f(x)零点;
(Ⅱ)若△ABC的三内角A、B、C的对边分别是a、b、c,且f(A)=1,求$\frac{b+c}{a}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数$f(x)=2sin({2x+ϕ+\frac{π}{3}})$是奇函数,且在区间$[{0,\frac{π}{4}}]$是减函数,则ϕ的值可以是(  )
A.$-\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{5π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,若输出的S为1525,则判断框内应填(  )
A.k<4B.k≤4C.k>4D.k≥4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知{an}是公差不为零的等差数列,a1=1,且a1,a2,a4成等比数列.
(1)求数列{an}的通项;
(2)求数列$\left\{{{2^{a_n}}}\right\}$的前n项和Sn

查看答案和解析>>

同步练习册答案