精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的图象一个最高点为P( ,2),相邻最低点为Q( ,﹣2),当x∈[﹣ ]时,求f(x)的值域.

【答案】解:由题意可得A=2, = ,∴ω=2.
再根据最高点的坐标可得2 +φ=2kπ+ ,k∈Z,即 φ=2kπ,再结合|φ|< ,可得φ=0,
∴f(x)=2sin2x.
当x∈[﹣ ]时,2x∈[﹣ ],sin2x∈[﹣ ,1],∴f(x)∈[﹣ ,2]
【解析】由函数的图象的顶点坐标求出A,由周期求出ω,由最低点的坐标求出φ的值,可得函数的解析式,再利用正弦函数的定义域和值域,求得f(x)的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)讨论函数的单调区间;

(2)若 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(﹣∞,0)∪(0,+∞)上的奇函数f(x)满足f(2)=0,且在(﹣∞,0)上是增函数;又定义行列式 ; 函数 (其中 ).
(1)若函数g(θ)的最大值为4,求m的值.
(2)若记集合M={m|恒有g(θ)>0},N={m|恒有f[g(θ)]<0},求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1: ,椭圆C2以C1的长轴为短轴,且与C1

相同的离心率.

(1)求椭圆Q的方程;

(2)设0为坐标原点,点A,B分别在椭圆C1和C2上,,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种“笼具”由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为,高为,圆锥的母线长为.

(1)求这种“笼具”的体积;

(2)现要使用一种纱网材料制作50个“笼具”,该材料的造价为每平方米8元,共需多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【浙江省名校协作体2017届高三上学期联考】已知椭圆,经过椭圆上一点的直线与椭圆有且只有一个公共点,且横坐标为.

(1)求椭圆的标准方程

2)若椭圆的一条动弦为坐标原点面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[5060),[6070),[7080),[8090),[90100]

1)求图中a的值;

2)根据频率分布直方图,估计这100名学生语文成绩的平均分;

3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[5090)之外的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求的轨迹

(2)过轨迹上任意一点作圆的切线,设直线的斜率分别是,试问在三个斜率都存在且不为0的条件下, 是否是定值,请说明理由,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

同步练习册答案