精英家教网 > 高中数学 > 题目详情

如图,已知圆与圆外切于点,直线是两圆的外公切线,分别与两圆相切于两点,是圆的直径,过作圆的切线,切点为.

(Ⅰ)求证:三点共线;
(Ⅱ)求证:.

证明见解析

解析试题分析:(I)连接,由于是圆的直径,可得.作圆与圆 的内公切线与点.利用切线的性质可得: ,再利用三角形的内角和定理可得,进而证明三点共线.
(II)由切线的性质可得,利用射影定理可得.再利用切割线定理可得,即可证明.
试题解析:(Ⅰ)连结PC,PA,PB,BO2
是圆O1的直径            2分

连结O1O2必过点P
是两圆的外公切线,为切点


由于   
又因为  三点共线     5分
(温馨提示:本题还可以利用作出内公切线等方法证明出结论,请判卷老师酌情给分!)
(Ⅱ)CD切圆O2于点D              7分
中,,又 
                       10分
考点:1、两圆的公切线的性质;2、射影定理和切割线定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

内有一点为过点且倾斜角为的弦.

(1)当时,求
(2)当弦被点平分时,求出直线的方程;
(3)设过点的弦的中点为,求点的坐标所满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为,直线的方程为,点在直线上,过点作圆的切线,切点为.
(1)若,试求点的坐标;
(2)若点的坐标为,过作直线与圆交于两点,当时,求直线的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知直线l的参数方程为为参数),圆的极坐标方程为.
(1)若圆关于直线对称,求的值;
(2)若圆与直线相切,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的圆心在直线上,且与轴交于两点,.
(1)求圆的方程;
(2)求过点的圆的切线方程;
(3)已知,点在圆上运动,求以,为一组邻边的平行四边形的另一个顶点轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知半径为2,圆心在直线上的圆C.
(Ⅰ)当圆C经过点A(2,2)且与轴相切时,求圆C的方程;
(Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C经过A(1,1)、B(2,)两点,且圆心C在直线l:x-y+1=0上,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动点到定点与到定点的距离之比为.
(1)求动点的轨迹C的方程,并指明曲线C的轨迹;
(2)设直线,若曲线C上恰有三个点到直线的距离为1,求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点为圆心的圆与轴交于点,与轴交于点,其中为坐标原点。
(1)求证:的面积为定值;
(2)设直线与圆交于点,若,求圆的方程。

查看答案和解析>>

同步练习册答案