精英家教网 > 高中数学 > 题目详情

【题目】数列{an}满足:a1=,a2=2,3(an+1-2an+an-1)=2.

(1)证明:数列{an+1-an}是等差数列;

(2)求使+…+成立的最小的正整数n.

【答案】(1)见解析;(2)6

【解析】分析:(1)由可得 ,从而可得数列是以为首项,为公差的等差数列;(2) 由(1)知,于是累加求和得 ,利用裂项相消法求和,解不等式即可得结果.

详解:(1)证明 由3(an+1-2an+an-1)=2可得

an+1-2an+an-1=,

即(an+1-an)-(an-an-1)=,

故数列{an+1-an}是以a2-a1=为首项,为公差的等差数列.

(2) 由(1)知an+1-an=(n-1)=(n+1),

于是累加求和得an=a1+(2+3+…+n)=n(n+1),

=3.

+…+=3-,

∴n>5.∴最小的正整数n为6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知公差大于零的等差数列{an}的前n项和Sn,且满足a3·a5=112,a1+a7=22.

(1)求等差数列{an}的第七项a7和通项公式an

(2)若数列{bn}的通项bn=an+an+1,{bn}的前n项和Sn,写出使得Sn小于55时所有可能的bn的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆过点,求

1)周长最小的圆的方程;

2)圆心在直线上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体 中, ,直线 与直线 所成的角为 ,直线 与平面 所成的角为 ,则 ( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的中心在原点焦点在 轴上,离心率等于 ,它的一个顶点恰好是抛物线 的焦点.

(1)求椭圆 的焦点;
(2)已知点 在椭圆 上,点 是椭圆 上不同于 的两个动点,且满足: ,试问:直线 的斜率是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,,点分别是的中点.

求证:(1)直线平面

(2)平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是数列 的前 项和,并且 ,对任意正整数 ,设 ).
(1)证明:数列 是等比数列,并求 的通项公式;
(2)设 ,求证:数列 不可能为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y满足约束条件 ,若目标函数2z=2x+ny(n>0),z的最大值为2,则y=tan(nx+ )的图象向右平移 后的表达式为(
A.y=tan(2x+
B.y=tan(x﹣
C.y=tan(2x﹣
D.y=tan2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

同步练习册答案