精英家教网 > 高中数学 > 题目详情
10.若点A(1,0)和点B(5,0)到直线l的距离依次为1和2,则这样的直线有4条.

分析 分别以A,B为圆心,以1和2为半径作圆,则符合条件的直线为两圆的公切线,即可得出结论.

解答 解:分别以A,B为圆心,以1和2为半径作圆,则符合条件的直线为两圆的公切线,
显然两圆外离,故两圆共有4条公切线,
∴满足条件的直线l共有4条.
故答案为:4.

点评 本题考查了点到直线的距离,巧用转化法是快速解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设D为△ABC所在平面内一点,$\overrightarrow{AD}=2\overrightarrow{CD}$,则(  )
A.$\overrightarrow{BD}=-\overrightarrow{BA}+2\overrightarrow{BC}$B.$\overrightarrow{BD}=2\overrightarrow{BA}-\overrightarrow{BC}$C.$\overrightarrow{BD}=\overrightarrow{BA}+2\overrightarrow{BC}$D.$\overrightarrow{BD}=\frac{1}{3}\overrightarrow{BA}+\frac{2}{3}\overrightarrow{BC}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设F1,F2分别是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左右焦点,P为椭圆上任意一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为15,最小值为$\sqrt{97}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知P(x0,y0)(x0≠±a)是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点,M,N分别是椭圆E的左右顶点,直线PM、PN的斜率之积为-$\frac{1}{5}$.
(1)求椭圆E的离心率;
(2)过椭圆E的左焦点F1的直线交椭圆E于A、B两点,F2为椭圆E的右焦点,试求△AF2B的内切圆半径r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在某产品的生产过程中,次品率p依赖于日产量,已知p=$\left\{\begin{array}{l}{\frac{1}{101-x},0<x≤100}\\{1,x>100}\end{array}\right.$,其中x为正整数,已知该厂每生产一件正品可盈利A元,但生产一件次品就要损失$\frac{A}{3}$元.
(1)将该厂的日盈利额y(元)表示为日产量x(件)的函数,并指出这个函数的定义域:
(2)为了获得最大利益,该厂的日产量应定义为多少.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=$\left\{\begin{array}{l}{x-2,x≥2}\\{\frac{1}{2}x-1,x<2}\end{array}\right.$,g(x)=log3x,则函数F(x)=f(x)-g(x)有(  )个零点.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆$C:\frac{x^2}{49}+\frac{y^2}{24}=1$的左右焦点分别为F1,F2,C上一点P满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,则△PF1F2的内切圆面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.姜堰某化学试剂厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是$5x+1-\frac{3}{x}$千元.
(1)要使生产该产品2小时获得利润不低于30千元,求x的取值范围;
(2)要使生产120千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.比较下列各组数的大小.
(1)sin$\frac{π}{4}$和sin$\frac{2π}{3}$;
(2)sin(-$\frac{π}{18}$)和sin(-$\frac{π}{10}$);
(3)sin$\frac{21π}{5}$和sin$\frac{42π}{5}$;
(4)sin194°和cos160°.

查看答案和解析>>

同步练习册答案