精英家教网 > 高中数学 > 题目详情
13.若(2x-1)8的展开式二项系数最大项是mxn,则m+n=74.

分析 由题意可得,(2x-1)8的展开式二项系数最大项是T4+1=${C}_{8}^{4}$•(2x)4•(-1)4=70x4,利用条件,即可求得m+n.

解答 解:由题意可得,(2x-1)8的展开式二项系数最大项是T4+1=${C}_{8}^{4}$•(2x)4•(-1)4=70x4
∵(2x-1)8的展开式二项系数最大项是mxn
∴m=70,n=4,
∴m+n=74
故答案为:74.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.圆心坐标为(2,-1)的圆在直线x-y-1=0上截得的弦长为2$\sqrt{2}$,则此圆的方程为(x-2)2+(y+1)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=$\sqrt{{x}^{2}-2x-3}$的定义域为(  )
A.[-1,3]B.(-∞,-1)∪(3,+∞)C.(-1,3)D.(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,ABCD-A1B1C1D1是棱长为1正方体.
(1)求证:B1D1∥面C1BD;
(2)求证:A1C⊥平面C1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC中,角A,B,C的对边分别为a,b,c,若2sinB-sinC=2sin(A-C).
(1)求cosA;
(2)若a=$\sqrt{10}$,b+c=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2sin(2x-$\frac{π}{3}$)+1.
(Ⅰ)求函数f(x)图象的对称轴的方程和对称中心的坐标;
(Ⅱ)求函数f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的单调递增区间;
(Ⅲ)求函数f(x)在[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知Sn是数列{an}的前n项和,a1=2,Sn+1=$\frac{1}{2}$Sn+2(n∈N*),则Sn的取值范围是(  )
A.(2,4]B.[2,4)C.[2,4]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2sin(ωx),其中常数ω>0;
(1)若y=f(x)在$[-\frac{π}{4},\frac{2π}{3}]$上单调递增,求ω的取值范围;
(2)令ω=4,将函数y=f(x)的图象向左平移$\frac{π}{12}$个单位,再向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少含有20个零点,在所有满足上述条件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin182°cos28°-cos2°sin28°的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案