¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬Èç¹ûÂú×㣺¶ÔÈÎÒâx¡ÊD£¬´æÔÚ³£ÊýM¡Ý0£¬¶¼ÓÐ|f£¨x£©|¡ÜM³ÉÁ¢£¬Ôò³Æf£¨x£©ÊÇDÉϵÄÓн纯Êý£¬ÆäÖÐM³ÆΪº¯Êýf£¨x£©µÄÒ»¸öÉϽ磮ÒÑÖªº¯Êýf£¨x£©=
ex
a
+
a
ex
£¬g£¨x£©=log2
3+ax
x+3
£®ÆäÖÐa£¼0
£¨1£©Èôº¯Êýf£¨x£©ÎªÅ¼º¯Êý£¬ÇóʵÊýaµÄÖµ£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Çóº¯Êýg£¨x£©ÔÚÇø¼ä[-1£¬1]ÉϵÄËùÓÐÉϽ繹³ÉµÄ¼¯ºÏ£»
£¨3£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÊÇ·ñ´æÔÚÕâÑùµÄ¸ºÊµÊýk£¬Ê¹g£¨k-cos¦È£©+g£¨cos2¦È-k2£©¡Ý0
¶ÔÒ»ÇЦȡÊRºã³ÉÁ¢£¬Èô´æÔÚ£¬ÊÔÇó³ökÈ¡ÖµµÄ¼¯ºÏ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºº¯ÊýÓë·½³ÌµÄ×ÛºÏÔËÓÃ
רÌ⣺º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ
·ÖÎö£º£¨1£©Í¨¹ýf£¨x£©=
ex
a
+
a
ex
Ϊżº¯Êý£¬ÍƳöa2=1£¬È»ºóÇó³öa£®
£¨2£©Çó³ög(x)=log2
3-x
x+3
£¬Í¨¹ýµ¥µ÷ÐÔÇó³ö-1¡Üg£¨x£©¡Ü1£¬È»ºóÇó³öº¯Êýg£¨x£©ÔÚÇø¼ä[-1£¬1]ÉϵÄËùÓÐÉϽ繹³É¼¯ºÏΪ[1£¬+¡Þ£©£®
£¨3£©Çó³ög£¨x£©µÄ¶¨ÒåÓòΪ£¨-3£¬3£©£¬ÅжÏf£¨x£©ÊÇÆ溯Êý£®Í¨¹ýf£¨x£©ÊÇ£¨-3£¬3£©Éϵļõº¯Êý£¬×ª»¯Îª£º
k£¼0
-3£¼k-cos¦È£¼3
-3£¼cos2¦È-k2£¼3
k-cos¦È¡Ük2-cos2¦È
¶Ô¦È¡ÊRºã³ÉÁ¢£¬È»ºóÇó½âkµÄ·¶Î§£®
½â´ð£º £¨±¾Ìâ14·Ö£©
½â£º£¨1£©ÒòΪf£¨x£©=
ex
a
+
a
ex
Ϊżº¯Êý£¬
ËùÒÔf£¨-x£©=f£¨x£©£¬¼´
e-x
a
+
a
e-x
=
ex
a
+
a
ex
£¬
¡à(a-
1
a
)(ex-
1
ex
)=0

µÃa2=1£¬
¶øa£¼0£¬¹Êa=-1¡­£¨2·Ö£©£®
£¨2£©ÓÉ£¨1£©µÃ£ºg(x)=log2
3-x
x+3
£¬
¶øg£¨x£©=log2£¨-1+
1
x+3
£©£¬
Ò×Öªg£¨x£©ÔÚÇø¼ä[-1£¬1]Éϵ¥µ÷µÝ¼õ£¬
ËùÒÔ-1¡Üg£¨x£©¡Ü1£¬
ËùÒÔº¯Êýg£¨x£©µÄÖµÓòΪ[-1£¬1]£¬
ËùÒÔ|g£¨x£©|¡Ü1£¬¡­£¨5·Ö£©
¹Êº¯Êýg£¨x£©ÔÚÇø¼ä[-1£¬1]ÉϵÄËùÓÐÉϽ繹³É¼¯ºÏΪ[1£¬+¡Þ£©£®¡­£¨6·Ö£©
£¨3£©¡ßg£¨x£©µÄ¶¨ÒåÓòΪ£¨-3£¬3£©
ÓÉÓÚf(-x)=lg(
3+x
3-x
)=-lg(
3-x
3+x
)=-f(x)
¡àf£¨x£©ÊÇÆ溯Êý£®¡­£¨7·Ö£©
ÓÖÒ×Öªg£¨x£©ÔÚÇø¼ä£¨-3£¬3£©Éϵ¥µ÷µÝ¼õ£¬
¡ßg£¨k-cos¦È£©+g£¨cos2¦È-k2£©¡Ý0
¡àf£¨k-cos¦È£©¡Ý-f£¨cos2¦È-k2£©=f£¨k2-cos2¦È£©¡­£¨8·Ö£©
¡ßf£¨x£©ÊÇ£¨-3£¬3£©Éϵļõº¯Êý
¡à
k£¼0
-3£¼k-cos¦È£¼3
-3£¼cos2¦È-k2£¼3
k-cos¦È¡Ük2-cos2¦È
¶Ô¦È¡ÊRºã³ÉÁ¢£¬
ÓÉk-cos¦È¡Ük2-cos2¦È¶Ô¦È¡ÊRºã³ÉÁ¢£¬
µÃ£ºk-k2¡Ücos¦È-cos2¦È¶Ô¦È¡ÊRºã³ÉÁ¢£®¡­£¨10·Ö£©
Áîy=cos¦È-cos2¦È=
1
4
-(cos¦È-
1
2
)2
£¬
¡ßcos¦È¡Ê[-1£¬1]¡ày¡Ê[-2£¬
1
4
]
£¬
¡àk-k2¡Ü-2⇒k¡Ü-1£¬
ͬÀí£ºÓÉ-3£¼k-cos¦È£¼3¶Ô¦È¡ÊRºã³ÉÁ¢µÃ£º-2£¼k£¼2¡­£¨12·Ö£©£®
ÓÉ-3£¼cos2¦È-k2£¼3¶Ô¦È¡ÊRºã³ÉÁ¢µÃ£º-
3
£¼k£¼
3
¡­£¨13·Ö£©£®
¼´×ÛÉÏËùµÃ£º-
3
£¼k¡Ü-1
£®
ËùÒÔ´æÔÚÕâÑùµÄkÆ䷶ΧΪ-
3
£¼k¡Ü-1
¡­£¨14·Ö£©£®
µãÆÀ£º±¾Ì⿼²éº¯ÊýÓë·½³ÌµÄÓ¦Ó㬺¯ÊýµÄµ¥µ÷ÐÔÒÔ¼°ÆæżÐÔÒÔ¼°º¯ÊýµÄºã³ÉÁ¢ÎÊÌâµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijµ¥Î»ÓÐÖ°¹¤¹²60ÈË£¬ÎªÁË¿ªÕ¹ÉçÍŻ£¬¶ÔÈ«ÌåÖ°¹¤½øÐÐÎʾíµ÷²é£¬ÆäÖÐϲ»¶ÌåÓýÔ˶¯µÄ¹²28ÈË£¬Ï²»¶ÎÄÒջµÄ¹²26ÈË£¬»¹ÓÐ12È˶ÔÌåÓýÔ˶¯ºÍÎÄÒջ¶¼²»Ï²»¶£¬Ôòϲ»¶ÌåÓýÔ˶¯µ«²»Ï²»¶ÎÄÒջµÄÈ˹²ÓÐ
 
ÈË£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬a¡¢b¡¢c·Ö±ðÊǽÇA¡¢B¡¢CËù¶ÔÓ¦µÄ±ß£¬¡ÏC=90¡ã£¬Ôò
a+b
c
µÄÈ¡Öµ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x2+£¨a-2£©x-2a+4£¬g£¨x£©=3x2+ax-2a£®
£¨1£©Èôº¯Êýf£¨x£©ÎªÅ¼º¯Êý£¬Çóº¯Êýg£¨x£©ÔÚ[-a£¬a+2]ÉϵÄÖµÓò£»
£¨2£©Èô´æÔÚx¡Ê[-3£¬1]£¬Ê¹µÃf£¨x£©+g£¨x£©£¾0³ÉÁ¢£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨3£©Èôº¯Êýh£¨x£©=
f(x)
g(x)
ÔÚ¶¨ÒåÓòÄÚµÄÖµºãΪÕýÊý£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪ȫ¼¯ÎªR£¬¼¯ºÏP={x|x=a2+4a+1£¬a¡ÊR}£¬Q={y|y=-b2+2b+3£¬b¡ÊR}£¬ÇóP¡ÉQºÍP¡È£¨∁RQ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

µ¼º¯ÊýµÄ×î´óÖµÊÇÔ­º¯ÊýµÄ×îСֵ£®
 
£¨ÅÐ¶Ï¶Ô´í£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÈçͼËùʾµÄ¼¸ºÎÌåÖУ¬ËıßÐÎBB1C1CÊdz¤·½ÐΣ¬BB1¡ÍAB£¬CA=CB£¬
A1B1¡ÎAB£¬AB=2A1B1£¬E£¬F·Ö±ðÊÇAB£¬AC1µÄÖе㣮
£¨1£©ÇóÖ¤£ºEF¡ÎƽÃæBB1C1C£»
£¨2£©ÇóÖ¤£ºÆ½ÃæC1AA1¡ÍƽÃæABB1A1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨ÒåÔÚÇø¼ä£¨1£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©µÄµ¼º¯ÊýΪf¡ä£¨x£©£®Èç¹û´æÔÚʵÊýaºÍº¯Êýh£¨x£©£¬ÆäÖÐh£¨x£©¶ÔÈÎÒâµÄx¡Ê£¨1£¬+¡Þ£©¶¼ÓÐh£¨x£©£¾0£¬Ê¹µÃf¡ä£¨x£©=h£¨x£©£¨x2-ax+1£©£¬Ôò³Æº¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨a£©£®
É躯Êýf£¨x£©=lnx+
a+2
x+1
£¨x£¾1£©£¬ÆäÖÐaΪʵÊý£®
£¨1£©ÇóÖ¤£ºº¯Êýf£¨x£©¾ßÓÐÐÔÖÊP£¨a£©£»
£¨2£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªa£¾b£¾c£¾0£¬Ôòa2+
1
bc
+
1
a(a-b)
+
1
b(a-c)
µÄ×îСֵΪ£¨¡¡¡¡£©
A¡¢4B¡¢6C¡¢8D¡¢10

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸