精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知椭圆的离心率为,且过点.

(1)求的方程;

(2)若动点在直线上,过作直线交椭圆两点,使得,再过作直线,证明:直线恒过定点,并求出该定点的坐标.

【答案】(1)(2)

【解析】试题分析

1)由题意得根据离心率为可得,故可得到C的方程。(2)由为线段的中点。设,当时,由“点差法”可得直线的斜率为,从而直线的方程可求得为

过定点;当时, 过点。故可得直线过点

试题解析:

(1)由题意知

又椭圆的离心率为,所以

所以

所以椭圆的方程为.

(2)因为直线的方程为,设

①当时,设,显然

可得,即,

,所以为线段的中点,

故直线的斜率为

所以直线的方程为

,显然恒过定点

②当时, 过点

综上可得直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数y=﹣sin(ωx+φ)(ω>0,φ∈(﹣ ))的一条对称轴为x= ,一个对称中心为( ,0),在区间[0, ]上单调.
(1)求ω,φ的值;
(2)用描点法作出y=sin(ωx+φ)在[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2axx2-3ln x,其中a∈R,为常数.

(1)若f(x)在x∈[1,+∞)上是减函数,求实数a的取值范围;

(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=xeax+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,
(1)求a,b的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题,其中正确命题的个数(
①若a>|b|,则a2>b2
②若a>b,c>d,则a﹣c>b﹣d
③若a>b,c>d,则ac>bd
④若a>b>o,则
A.3个
B.2个
C.1个
D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形ABCD为正方形,PA⊥平面ABCD,PA∥BE,AB=PA=4,BE=2.

(1)求证:CE∥平面PAD;
(2)求PD与平面PCE所成角的正弦值;
(3)在棱AB上是否存在一点F,使得平面DEF⊥平面PCE?如果存在,求 的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的方程为(x﹣ 2+(y+1)2=9,以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线OP:θ= (p∈R)与圆C交于点M,N,求线段MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆: (a>b>0),左右焦点分别是F1 , F2 , 焦距为2c,若直线 与椭圆交于M点,满足∠MF1F2=2∠MF2F1 , 则离心率是(
A.
B. -1
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求适合下列条件的双曲线的方程:

(1) 虚轴长为12,离心率为

(2) 焦点在x轴上,顶点间距离为6,渐近线方程为.

查看答案和解析>>

同步练习册答案