精英家教网 > 高中数学 > 题目详情

【题目】设函数

(1)求证:不论为何实数总为增函数;

(2)确定的值,使为奇函数;

(3)在(2)的条件下求的值域.

【答案】(1) 见解析; (2)

3为奇函数时,其值域为

【解析】

1)先设x1x2,欲证明不论a为何实数fx)总是为增函数,只须证明:fx1-fx2)<0,即可;

2)根据fx)为奇函数,利用定义得出f-x=-fx)恒成立,从而求得a值即可.

3)由(2)知,利用指数函数y=2x的性质结合不等式的性质即可求得fx)的值域.

(1)的定义域为R, ,且,

=,

,,

,所以不论为何实数总为增函数.……………………5

(2)为奇函数,,,

整理得

,解得:

……………………10

4)由(2),

,,

故当为奇函数时,其值域为……………………14

另解:由(2).

,得

时,得,矛盾,所以

故有.

时,,所以,解得.

故当为奇函数时,其值域为………………14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:

(1)直线PA∥平面DEF;
(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】女共名同学从左至右排成一排合影,要求左端排男同学,右端排女同学,且女同学至多有人排在一起,则不同的排法种数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,在处的切线方程为.

(1)求

(2)若,证明: .

【答案】(1) ;(2)见解析

【解析】试题分析:1)求出函数的导数,得到关于 的方程组,解出即可;

(2)由(1)可知

,可得,令, 利用导数研究其单调性可得

从而证明.

试题解析:((1)由题意,所以

,所以

,则,与矛盾,故 .

(2)由(1)可知

,可得

时, 单调递减,且

时, 单调递增;且

所以上当单调递减,在上单调递增,且

.

【点睛本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.

型】解答
束】
22

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求该函数的定义域;

(2)当时,如果对任何都成立,求实数的取值范围;

(3)若,将函数的图像沿轴方向平移,得到一个偶函数的图像,设函数的最大值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:

年入流量X

40<X<80

80≤X≤120

X>120

发电机最多可运行台数

1

2

3

若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式组 的解集记为D,有下列四个命题:
p1(x,y)∈D,x+2y≥﹣2 p2(x,y)∈D,x+2y≥2
p3(x,y)∈D,x+2y≤3 p4(x,y)∈D,x+2y≤﹣1
其中真命题是(
A.p2 , p3
B.p1 , p4
C.p1 , p2
D.p1 , p3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若 都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;

(2)若 都是从区间上任取的一个数,求成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题错误的序号为_______

(1) 样本频率分布直方图中小矩形的高就是对应组的频率.

(2) 过点P(2,-2)且与曲线相切的直线方程是.

(3) 若样本的平均数是5,方差是3,则数据的平均数是11,方差是12.

(4) 抛掷一颗质地均匀的骰子,事件“向上点数不大于4”和事件“向上点数不小于3”是对立事件.

查看答案和解析>>

同步练习册答案