分析 (1)求出函数的导数,通过讨论k的范围求出函数的单调区间即可;
(2)结合题意得到k>0时,函数的单调性,从而求出k的范围即可.
解答 解:(1)由f(x)=ex-kx+k,(k∈R),则f′(x)=ex-k,
讨论:若k≤0,则f′(x)>0,故f(x)在定义域上单调递增;
若k>0,令f′(x)>0,解得x>lnk;令f′(x)<0,解得x<lnk,
综上:当k≤0时,f(x)的单调递增区间为R,无单调递减区间;
当k>0时,f(x)的单调递增区间为(lnk,+∞),单调递减区间为(-∞,lnk),
(2)由题意:由(1)可知,当k≤0时,函数至多只有一个零点,不符合题意,舍去;
k>0时,令f(lnk)=elnk-klnk+k<0,解得k>e2,
此时f(1)=e>0;x→+∞时,f(x)→+∞>0,
因此会有两个零点,符合题意.
综上:实数k的取值范围是(e2,+∞).
点评 本题考查了函数的单调性问题,考查导数的应用以及函数恒成立问题,考查分类讨论思想,是一道综合题.
科目:高中数学 来源: 题型:选择题
A. | $-\frac{1}{6}$ | B. | $\frac{1}{6}$ | C. | $-\frac{1}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{2}$ | B. | $\frac{8}{5}$ | C. | $\frac{5}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 8 | B. | 6 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com