【题目】已知函数.
(Ⅰ)求过点且与曲线相切的直线方程;
(Ⅱ)设,其中为非零实数,若有两个极值点,且,求证:.
【答案】(Ⅰ)(Ⅱ)详见解析
【解析】试题分析: (Ⅰ)设切点,根据导数几何意义得切线斜率等于切点处导数值,切点在切线上也在曲线上列方程组,可解得切点坐标,根据点斜式写出切线方程,(Ⅱ)先根据导数确定有两个极值点的条件:,并求出极值点,再研究函数,此时先将用表示,转化为证明一元函数在上最小值大于零,这可以利用导数易得.
试题解析:解:(Ⅰ)
设切点为,则切线的斜率为
点在上,
,解得
切线的斜率为,切线方程为
(Ⅱ)
当时,即时,在上单调递增;
当时,由得,,故在上单调递增,在上单调递减,在上单调递增;
当时,由得,在上单调递减,在上单调递增.
当时,有两个极值点,即,
,由得,
由
,即证明
即证明
构造函数,
在上单调递增,
又,所以在时恒成立,即成立
.
科目:高中数学 来源: 题型:
【题目】已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0.
(1)求证:f(x)是奇函数;
(2)若f(1)=,试求f(x)在区间[-2,6]上的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列三个集合:
①{x|y=x2+1};
②{y|y=x2+1};
③{(x,y)|y=x2+1}.
(1)它们是不是相同的集合?
(2)它们各自的含义是什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a- (a∈R).
(1) 判断函数f(x)的单调性并给出证明;
(2) 若存在实数a使函数f(x)是奇函数,求a;
(3)对于(2)中的a,若f(x)≥,当x∈[2,3]时恒成立,求m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为上的偶函数,当时, .对于结论
(1)当时, ;(2)函数的零点个数可以为4,5,7;
(3)若,关于的方程有5个不同的实根,则;
(4)若函数在区间上恒为正,则实数的范围是.
说法正确的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2009年为第1年,且前4年中,第x年与年产量f(x) 万件之间的关系如下表所示:
x | 1 | 2 | 3 | 4 |
f(x) | 4.00 | 5.58 | 7.00 | 8.44 |
若f(x)近似符合以下三种函数模型之一:f(x)=ax+b,f(x)=2x+a,f(x)=logx+a.
(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;
(2)因遭受某国对该产品进行反倾销的影响,2015年的年产量比预计减少30%,试根据所建立的函数模型,确定2015年的年产量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}
(1)若a=-2,求B∩A,B∩UA;
(2)若BA,求实数a取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com