精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)求过点且与曲线相切的直线方程;

(Ⅱ)设,其中为非零实数,若有两个极值点,且,求证:.

【答案】(Ⅰ)(Ⅱ)详见解析

【解析】试题分析: (Ⅰ)设切点,根据导数几何意义得切线斜率等于切点处导数值,切点在切线上也在曲线上列方程组,可解得切点坐标,根据点斜式写出切线方程,(Ⅱ)先根据导数确定有两个极值点的条件:,并求出极值点,再研究函数,此时先将表示,转化为证明一元函数上最小值大于零,这可以利用导数易得.

试题解析:解:(Ⅰ)

设切点为,则切线的斜率为

上,

,解得

切线的斜率为切线方程为

(Ⅱ)

时,即时,上单调递增;

时,由得,上单调递增,在上单调递减,在上单调递增;

时,由得,上单调递减,在上单调递增.

时,有两个极值点,即

,由得,

,即证明

即证明

构造函数

上单调递增,

,所以时恒成立,即成立

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0.

(1)求证:f(x)是奇函数;

(2)若f(1)=,试求f(x)在区间[-2,6]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列三个集合:

{x|yx2+1};

{y|yx2+1};

{(xy)|yx2+1}.

(1)它们是不是相同的集合?

(2)它们各自的含义是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)a (aR).

(1) 判断函数f(x)的单调性并给出证明;

(2) 若存在实数a使函数f(x)是奇函数,求a

(3)对于(2)中的a,若f(x),当x[2,3]时恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知上的偶函数,当时, .对于结论

(1)当时, ;(2)函数的零点个数可以为4,5,7;

(3)若,关于的方程有5个不同的实根,则

(4)若函数在区间上恒为正,则实数的范围是.

说法正确的序号是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,已知曲线在点处的切线与直线垂直.

(1)求的值;

(2)若函数,且在区间上是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2009年为第1年,且前4年中,第x年与年产量f(x) 万件之间的关系如下表所示:

x

1

2

3

4

f(x)

4.00

5.58

7.00

8.44

f(x)近似符合以下三种函数模型之一:f(x)=axbf(x)=2xaf(x)=logxa.

(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;

(2)因遭受某国对该产品进行反倾销的影响,2015年的年产量比预计减少30%,试根据所建立的函数模型,确定2015年的年产量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集UR,集合A{x|1x4}B{x|2ax3a}

(1)a=-2,求BABUA

(2)BA,求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求过点且与曲线相切的直线方程;

(Ⅱ)设,其中为非零实数,若有两个极值点,且,求证:.

查看答案和解析>>

同步练习册答案