精英家教网 > 高中数学 > 题目详情
给出下列命题:
①存在实数x,使得sinx+cosx=
π
3

②函数y=sin2x的图象向右平移
π
4
个单位,得到y=sin(2x+
π
4
)
的图象;
③函数y=sin(
2
3
x-
7
2
π)
是偶函数;
④已知α,β是锐角三角形ABC的两个内角,则sinα>cosβ.
其中正确的命题的个数为
3
3
分析:利用和差角公式,及正弦型函数的值域,可判断①的真假;
根据函数图象的平移规则,结合已知求出平移后函数的解析式,比照后可判断②的真假;
利用诱导公式,将已知函数解析式化为余弦型函数,可判断③的真假;
根据已知临到α>
π
2
,进而根据正弦函数的单调性可得④的真假
解答:解:sinx+cosx∈[-
2
2
],
π
3
[-
2
2
],故①正确;
将函数y=sin2x的图象向右平移
π
4
个单位,得到y=sin[2(x-
π
4
)]
的图象.故②错误;
函数y=sin(
2
3
x-
7
2
π)
=com(
2
3
x)
是偶函数,故③正确;
已知α,β是锐角三角形ABC的两个内角,则α+β>
π
2
,则α>
π
2
,sinα>sin(
π
2
-β)
=cosβ,故④正确
故答案为:3
点评:本题考查的知识点是三角函数的性质,命题的真假判断与应用,其中熟练掌握三角函数的性质是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:①存在实数x,使得sinx+cosx=
π
3
;②函数y=sinx的图象向右平移
π
4
个单位,得到y=sin(2x+
π
4
)
的图象;③函数y=sin(
2
3
x-
7
2
π)
是偶函数;④已知α,β是锐角三角形ABC的两个内角,则sinα>cosβ.其中正确的命题的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①存在实数α,使sinα•cosα=1
②函数y=sin(
3
2
π+x)
是偶函数
x=
π
8
是函数y=sin(2x+
5
4
π)
的一条对称轴方程
④若α、β是第一象限的角,且α>β,则sinα>sinβ
其中正确命题的序号是
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①存在实数a,使sinacosa=1;
②y=cosx的单调递增区间是[2kπ,(2k+1)π],(k∈Z);
③y=sin(
2
-2x)是偶函数;
④若α,β是第一象限角,且α>β,则tanα>tanβ.
⑤函数f(x)=4sin(2x+
π
3
)的表达式可以改写成f(x)=4cos(2x-
π
6

⑥函数y=sinx的图象的对称轴方程为x=kπ+
π
2
,(k∈Z)

其中正确命题的序号是
③⑤⑥
③⑤⑥
.(注:把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①存在实数α使sinα•cosα=1成立;
②存在实数α使sinα+cosα=
3
2
成立;
③函数y=sin(
2
-2x)
是偶函数;
x=
π
8
是函数y=sin(2x+
4
)
的图象的一条对称轴的方程;
⑤在△ABC中,若A>B,则sinA>sinB.
其中正确命题的序号是(  )

查看答案和解析>>

同步练习册答案