精英家教网 > 高中数学 > 题目详情
10.若函数$f(x)=\left\{{\begin{array}{l}{(2a-1)x+a}&{(x≤1)}\\{{{log}_a}x}&{(x>1)}\end{array}}\right.$是R上的减函数,则实数a的取值范围是[$\frac{1}{3},\frac{1}{2}$).

分析 若函数$f(x)=\left\{{\begin{array}{l}{(2a-1)x+a}&{(x≤1)}\\{{{log}_a}x}&{(x>1)}\end{array}}\right.$是R上的减函数,则$\left\{\begin{array}{l}2a-1<0\\ 0<a<1\\ 2a-1+a≥0\end{array}\right.$,解得实数a的取值范围.

解答 解:∵函数$f(x)=\left\{{\begin{array}{l}{(2a-1)x+a}&{(x≤1)}\\{{{log}_a}x}&{(x>1)}\end{array}}\right.$是R上的减函数,
∴$\left\{\begin{array}{l}2a-1<0\\ 0<a<1\\ 2a-1+a≥0\end{array}\right.$,
解得:a∈[$\frac{1}{3},\frac{1}{2}$),
故答案为:[$\frac{1}{3},\frac{1}{2}$)

点评 本题考查的知识点是分段函数的应用,正确理解分段函数的单调性,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.如果两平行直线y=2x-b与y=2x+5之间距离为$\sqrt{5}$,那么b=0或-10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a>0,且a≠1,函数y=2+loga(x+2)的图象恒过定点P,则P点的坐标是(  )
A.(-1,2)B.(2,-1)C.(3,-2)D.(3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=ex(lnx-a)(e是自然对数的底数,e=2.71828…).
(1)若y=f(x)在x=1处的切线方程为y=2ex+b,求a、b的值;
(2)若[$\frac{1}{e}$,e]是y=f(x)的一个单调递减区间,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2(x≥0)}\\{2(x<0)}\end{array}\right.$,则f(1-2x)>f(x)的解集是(  )
A.(-∞,$\frac{1}{3}$)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{3}$,$\frac{1}{2}$)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|(0<x≤2)}\\{-\frac{1}{2}x+2(x>2)}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(  )
A.(1,4)B.(2,4)C.(0,8)D.(2,8)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.从集合{2,3,4,5}中任取2个数a,b分别作为底数和真数,出现的对数值大于1的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)利用辗转相除法求8251和6105的最大公约数
(2)利用秦九韶算法求多项式f(x)=x5+x4+x3+x2+x+1在x=3时的值.(两问都按算法写步骤方可得分)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若三棱锥P-ABC的正视图为如图所示边长为2的正三角形,俯视图为等腰直角三角形,则三棱锥的体积是(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案