在直三棱柱中,分别是的中点.
(1)求证:平面;
(2)求多面体的体积.
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2。
(1)求证:CE∥平面PAB;
(2)求四面体PACE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知平行四边形ABCD中,BC=2,BD⊥CD,四边形ADEF为正方形,平面ADEF⊥平面ABCD.记CD=x,V(x)表示四棱锥F-ABCD的体积.
(1)求V(x)的表达式.
(2)求V(x)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在边长为4的菱形ABCD中,∠DAB=60°,点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O,沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(1)求证:BD⊥平面POA;
(2)记三棱锥PABD体积为V1,四棱锥PBDEF体积为V2,且,求此时线段PO的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示是一几何体的直观图、正(主)视图、侧(左)视图、俯视图.
(1)若F为PD的中点,求证:AF⊥面PCD;
(2)求几何体BEC-APD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形ABCD是边长为2的正方形,直线l与平面ABCD平行,E和F是l上的两个不同点,且EA=ED,FB=FC.E′和F′是平面ABCD内的两点,EE′和FF′都与平面ABCD垂直.
(1)证明:直线E′F′垂直且平分线段AD;
(2)若∠EAD=∠EAB=60 °,EF=2.求多面体ABCDEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.
(1)求异面直线与所成角的余弦值;
(2)求二面角的正弦值;
(3)求此几何体的体积的大小
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com