精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆)的离心率为,且过点,椭圆的右顶点为.

(Ⅰ)求椭圆的的标准方程;

(Ⅱ)已知过点的直线交椭圆两点,且线段的中点为,求直线的斜率的取值范围.

【答案】(Ⅰ);(Ⅱ).

【解析】

试题(1)由椭圆的离心率为,且过点,列方程组,求解即可;

(2)依题意,直线过点,①当直线的斜率不为0时,可设其方程为,联立消去,由韦达定理、中点坐标公式,结合已知条件能求出直线的斜率的取值范围,②当直线的斜率为0时,线段的中点与坐标原点重合,的斜率为0.

试题解析:

(Ⅰ)依题意,

解得

故椭圆的标准方程为.

(Ⅱ)依题意,直线过点.①当直线的斜率不为0时,可设其方程为

联立消去

设点,直线的斜率为

时,

时,,因为 ,故

当且仅当,即时等号成立.

,故.

②当直线的斜率为0时,线段的中点与坐标原点重合,的斜率为0.

综上所述,直线的斜率的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,为了测量AB处岛屿的距离,小海在D处观测,AB分别在D处的北偏西15°、北偏东45°方向,再往正东方向行驶20海里至C处,观测BC处的正北方向,AC处的北偏西45°方向,则AB两岛屿的距高为___________海里.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,EFAB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm2

1)若广告商要求包装盒侧面积Scm)最大,试问x应取何值?

2)若广告商要求包装盒容积Vcm)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,当点的图象上运动时,点在函数的图象上运动.(其中.

1)求的表达式;

2)设集合,若为空集),求实数的取值范围;

3)设,若函数)的值域为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某饮料生产企业为了占有更多的市场份额,拟在2017年度进行一系列促销活动,经过市场调查和测算,饮料的年销售量x万件与年促销费t万元间满足.已知2017年生产饮料的设备折旧,维修等固定费用为3万元,每生产1万件饮料需再投入32万元的生产费用,若将每件饮料的售价定为其生产成本的150%与平均每件促销费的一半之和,则该年生产的饮料正好能销售完.

(1)2017年的利润y(万元)表示为促销费t(万元)的函数;

(2)该企业2017年的促销费投入多少万元时,企业的年利润最大?

(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的焦距是,长轴长是短轴长3倍,任作斜率为的直线与椭圆交于两点(如图所示),且点在直线的左上方.

1)求椭圆的方程;

2)若,求的面积;

3)证明:的内切圆的圆心在一条定直线上。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马中,侧棱底面,且,点 的中点,连接.

1)证明:平面

2)证明:平面.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;

3)记阳马的体积为,四面体的体积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数fx)有两个零点,求实数a的取值范围;

(2)若a=3,且对任意的x1∈[-1,2],总存在,使gx1)-fx2)=0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.其中是自然对数的底数.

1)求函数在点处的切线方程;

2)若不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案