精英家教网 > 高中数学 > 题目详情

【题目】从双曲线 =1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则|MO|﹣|MT|等于(
A.c﹣a
B.b﹣a
C.a﹣b
D.c﹣b

【答案】B
【解析】解:如图所示,设F′是双曲线的右焦点,连接PF′.

∵点M,O分别为线段PF,FF′的中点,

由三角形中位线定理得到:|OM|= |PF′|= (|PF|﹣2a)= |PF|﹣a

=|MF|﹣a,

∴|OM|﹣|MT|=|MF|﹣|MT|﹣a=|FT|﹣a,连接OT,因为PT是圆的切线,

则OT⊥FT,

在Rt△FOT中,|OF|=c,|OT|=a,

∴|FT|= =b.

∴|OM|﹣|MT|=b﹣a.

故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD为菱形,E为AC与BD的交点,PA⊥平面ABCD,M为PA中点,N为BC中点.
(1)证明:直线MN∥平面PCD;
(2)若点Q为PC中点,∠BAD=120°,PA= ,AB=1,求三棱锥A﹣QCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱台ABC﹣FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为CE中点,
(1)λ为何值时,MN∥平面ABC?
(2)在(1)的条件下,求直线AN与平面BMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A是双曲线 的右顶点,F(c,0)是右焦点,若抛物线 的准线l上存在一点P,使∠APF=30°,则双曲线的离心率的范围是(
A.[2,+∞)
B.(1,2]
C.(1,3]
D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2xlnx﹣x2+2ax,其中a>0.
(1)设g(x)是f(x)的导函数,求函数g(x)的极值;
(2)是否存在常数a,使得x∈[1,+∞)时,f(x)≤0恒成立,且f(x)=0有唯一解,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1的方程为 + =1,双曲线C2的左、右焦点分别是C1的左、右顶点,而以双曲线C2的左、右顶点分别是椭圆C1的左、右焦点.
(1)求双曲线C2的方程;
(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C2相交于不同的两点E、F,若△OEF的面积为2 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左手从甲袋中取球,用右手从乙袋中取球,
(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(2)若一次在同一袋中取出两球,如果两球颜色相同则称这次取球获得成功.某人第一次左手先取两球,第二次右手再取两球,记两次取球的获得成功的次数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车的使用年数x与所支出的维修费用y的统计数据如表:

使用年数x(单位:年)

1

2

3

4

5

维修总费用y(单位:万元)

0.5

1.2

2.2

3.3

4.5

根据上表可得y关于x的线性回归方程 = x﹣0.69,若该汽车维修总费用超过10万元就不再维修,直接报废,据此模型预测该汽车最多可使用( )
A.8年
B.9年
C.10年
D.11年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若f(x)的两个零点分别为x1 , x2 , 则|x1﹣x2|=(
A.
B.1+
C.2
D. +ln2

查看答案和解析>>

同步练习册答案