A. | e2e+3f(e)<e2ππ3f(π) | B. | e2e+3f(π)>e2ππ3f(e) | C. | e2e+3f(π)<e2ππ3f(e) | D. | e2e+3f(e)>e2ππ3f(π) |
分析 令g(x)=e2xx3f(x),g′(x)=)=e2xx2[(2x+3)f(x)+xf′(x)]>0,⇒g(x)=e2xx3f(x)在(0,+∞)上单调递增⇒g(e)<g(π),即可得到.
解答 解:∵f(x)>0且$\frac{2x+3}{x}>-\frac{{{f^'}(x)}}{f(x)}$总成立,∴(2x+3)f(x)+xf′(x)>0.
令g(x)=e2xx3f(x),g′(x)=)=e2xx2[(2x+3)f(x)+xf′(x)]>0,
∴g(x)=e2xx3f(x)在(0,+∞)上单调递增,∴g(e)<g(π),
∴e2e+3f(e)<e2ππ3f(π),故选:A.
点评 本题考查了构造新函数,处理不等式问题,属于压轴题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ②、③ | B. | ③、④ | C. | ①、④ | D. | ①、② |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com