精英家教网 > 高中数学 > 题目详情
6.m,n,l是直线,α,β是两个不同的平面,下面说法正确的是(  )
A.若m∥α,m∥β,则α∥β
B.若m⊥α,m?β,则α⊥β
C.若m?α,n?α,m,n是异面直线,则n与α相交
D.若m?α,n?α,l⊥m,l⊥n,则l⊥α

分析 在A中,α与β相交或平行;在B中,由平面与平面垂直的判定定理得α⊥β;在C中,n与α相交或n∥α;在D中,只有当m与n相交时,才有l⊥α.

解答 解:若m∥α,m∥β,则α与β相交或平行,故A错误;
若m⊥α,m?β,则由平面与平面垂直的判定定理得α⊥β,故B正确;
若m?α,n?α,m,n是异面直线,则n与α相交或n∥α,故C错误;
若m?α,n?α,l⊥m,l⊥n,则只有当m与n相交时,才有l⊥α,故D错误.
故选:B.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.sinx+$\sqrt{3}$cosx=a在区间(0,2π)内的个相异的实数根x1,x2
(1)求a的取值范围;
(2)求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得$\sqrt{{a_m}{a_n}}=32{a_1}$,则$\frac{1}{m}$+$\frac{4}{n}$的最小值为(  )
A.$\frac{2}{3}$B.$\frac{5}{3}$C.$\frac{5}{6}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$\overrightarrow{a}$=(2,0,2),$\overrightarrow{b}$=(-1,-1,0),则错误的是(  )
A.$\overrightarrow{a}$⊥$\overrightarrow{b}$B.<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{2π}{3}$
C.$\overrightarrow{a}$在$\overrightarrow{b}$上的射影为-$\sqrt{2}$D.$\overrightarrow{b}$在$\overrightarrow{a}$上的射影为-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数y=f(x)的解析式由下列程序确定

根据左侧程序求下列各式的值(直接写出结果即可)
(1)f( $\frac{π}{6}$ )=3;
(2)f(0)=0;
(3)f(-$\frac{1}{2}$)=$\frac{3\sqrt{2}}{2}$;
(4)f[f( $\frac{2π}{3}$ )]=$\frac{1}{4}$+$\sqrt{2}$;
(5)函数f(x)的解析式为:f(x)=$\left\{\begin{array}{l}{\stackrel{sin(x+\frac{π}{3})+4cos2x}{0}}&{\stackrel{x>0}{x=0}}\\{{2}^{x}+\sqrt{2}}&{x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知定义在R上函数f(x)部分自变量与函数值对应关系如表,若f(x)为偶函数,且在[0,+∞)上为增函数,不等式1<f(x-1)<2的解集是(  )
x   0234
f(x)-1123
A.(-2,-1)B.(3,4)C.(-2,-1)∪(3,4)D.(-2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|2x-m|+m.
(Ⅰ)若不等式f(x)≤6的解集为{x|-1≤x≤3},求实数m的值;
(Ⅱ)在(Ⅰ)的条件下,求使f(x)≤a-f(-x)有解的实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧棱PD⊥底面ABCD,PD=DA,E、F分别为PA、PC的中点.
(1)求证:EF∥平面ABCD;
(2)求证:DE⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设p:x≥0,q:log${\;}_{\frac{1}{2}}$(x+1)>0,则¬p是q的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分敢不必要条件

查看答案和解析>>

同步练习册答案