精英家教网 > 高中数学 > 题目详情
13.函数f(x)=-x3+1在R上是否具有单调性?如果具有单调性,它在R上是增函数还是减函数?试证明你的结论.

分析 先判断函数f(x)是R上的单调递减函数,再运用定义进行证明,作差得f(x1)-f(x2)=(x2-x1)[(x2+$\frac{1}{2}$x12+$\frac{3}{4}$x12)],即可下结论.

解答 解:函数f(x)=-x3+1在R上为单调递减函数,证明如下:
任取x1,x2∈(-∞,+∞),且x1<x2
则f(x1)-f(x2)=(-x13+1)-(-x23+1)
=x23-x13
=(x2-x1)(x22+x1x2+x12
=(x2-x1)[(x2+$\frac{1}{2}$x12+$\frac{3}{4}$x12)],
其中,x2-x1>0,(x2+$\frac{1}{2}$x12+$\frac{3}{4}$x12>0恒成立,
所以,f(x1)>f(x2)恒成立,
故f(x)为R上的单调递减函数,证毕.

点评 本题主要考查了函数单调性的判断和证明,通过对差式进行合理的恒等变形是解题的关键,涉及到作差法和配方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数y=2x2-4x-3,(0<x<3)的值域为(  )
A.(-3,3)B.(-5,-3)C.(-5,3)D.(-5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题“?x0∈R,使得x02>4”的否定是(  )
A.?x0∉R,使得$x_0^2>4$B.?x0∉R,使得$x_0^2≤4$
C.?x∈R,x2>4D.?x∈R,x2≤4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求y=log${\;}_{\frac{1}{2}}$(-x2-2x+3)的定义域、值域及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$f(x)=lgx-\frac{9}{x}$的零点大致所在区间是(  )
A.(6,7)B.(7,8)C.(8,9)D.(9,10)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知e是自然对数的底数,函数f(x)的定义域为R,2f(x)•2f′(x)>2,f(0)=27${\;}^{\frac{2}{3}}$-2${\;}^{lo{{g}_{2}}{3}}$×log2$\frac{1}{8}$+2lg($\sqrt{3+\sqrt{5}}$+$\sqrt{3-\sqrt{5}}$)-11,则不等式$\frac{f(x)-1}{{e}^{ln7-x}}$>1的解集为(  )
A.(-∞,0)B.(0,+∞)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法中正确的是(  )
A.在正三棱锥中,斜高大于侧棱
B.有一条侧棱垂直于底面的棱柱是直棱柱
C.底面是正方形的棱锥是正四棱锥
D.有一个面是多边形,其余各面均为三角形的几何体是棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,已知$b=5\sqrt{3}$,c=15,B=30°,则角C=60°或120°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.用向量法证明:连接三角形两边中点的线段平行于第三边且等于第三边的一半.

查看答案和解析>>

同步练习册答案