精英家教网 > 高中数学 > 题目详情
8.如图,α、β、λ是三个平面,满足α⊥γ,α∥β,求证:β⊥γ.

分析 要证平面β⊥平面γ,可证平面β经过了平面γ的一条垂线,由平面α⊥平面γ,可在平面α找到一条与平面γ垂直的直线,再由平面α∥平面β,利用两平面平行的性质在平面β内找到一条与平面γ垂直的直线,则问题得证.

解答 证明:如图,
∵平面α⊥平面γ,∴平面α与平面γ相交,设交线为m,
在平面α内作直线a⊥m,∵平面α⊥平面γ,∴a⊥γ,
在平面β内任取一点O,由直线a和点O确定平面M,设M∩β于b,
∵平面α∥平面β,由面面平行的判定定理,得a∥b,
∵a∥b,a⊥γ,∴b⊥γ
又∵b?β,
∴平面β⊥平面γ.

点评 本题考查了平面与平面垂直的判定,考查了平面与平面垂直的性质,考查了学生的空间想象能力和思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.己知直线l1:mx-y+2=0(m∈R),直线l2:x+my-2=0,点P是两直线的交点.
(1)判断两直线l1、l2的位置关系,并求点P的轨迹C的方程;
(2)已知M(1,1),设Q是直线x+y+2=0上的动点,QA.QB是轨迹C的两条切线,A,B为切点,求四边形QAMB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列各组中,集合P与M不能建立映射的是①(填序号).
①P={0},M=∅;
②P={1,2,3,4,5},M={2,4,6,8};
③P={有理数},M={数轴上的点};
④P={平面上的点},M={有序实数对}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.己知函数f(x)=-x2+|x-a|,a∈R.
(1)讨论f(x)的奇偶性,并证明你的结论;
(2)当a=-1时,求f(x)的值域;
(3)当a≤0时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,若|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,试求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.等差数列的前4项和为30,前8项和为100,则它的前16项和为360.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.方程组$\left\{\begin{array}{l}{x+y=3}\\{x-y=-1}\end{array}\right.$的解的集合是(  )
A.{x=1,y=2}B.{1,2}C.{(x,y)|x=1或y=2}D.{(1,2)}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数y=4x+$\frac{1}{x}$(x>0),那么当y取得最小值时,x的值是(  )
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设α∈R,函数f(x)=$\sqrt{2}$sin2xcosα+$\sqrt{2}$cos2xsinα-$\sqrt{2}$cos(2x+α)+cosα,x∈R.
(1)若α∈[$\frac{π}{4}$,$\frac{π}{2}$],求f(x)在区间[0,$\frac{π}{2}$]上的最大值;
(2)若f(x)=3,求a与x的值.

查看答案和解析>>

同步练习册答案