精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的奇函数fx)=exaex+2sinx满足,则zxlny的最小值是(

A.ln6B.2C.ln6D.2

【答案】B

【解析】

由已知可求a,然后对函数求导,结合导数可判断函数的单调性,进而可得关于xy的不等式组,结合线性规划知识即可求解

解:由题意f0)=1a0可得a1

所以fx)=exex+2sinx2+2cosx0

fx)在R上单调递增,则

作出可行域如图所示,其中A0),B03),C),

yexz,则由图象可知,设yx+3yexz相切于点Dx0y0),

y′=exz,令1可得x0z

yx+3yexz相切于点D(﹣21)时,z取得最小值zmin=﹣2.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数fx)=Asinωx)(A0,ω0,0φπ)的部分图象如图所示,又函数.

1)求函数的单调减区间;

2)设△ABC的内角A,B,C的对边分别为a,b,c,又,且锐角C满足,若sinB2sinA,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求曲线在点处的切线方程;

(2)令,讨论的单调性并判断有无极值,若有,求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,其焦点到准线的距离为2.直线与抛物线交于两点,过分别作抛物线的切线交于点.

1)求抛物线的标准方程;

2)若,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了释放学生压力,某校高三年级一班进行了一个投篮游戏,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮).在相同的条件下,每轮甲乙两人站在同一位置上,甲先投,每人投一次篮,两人有人命中,命中者得分,未命中者得分;两人都命中或都未命中,两人均得.设甲每次投篮命中的概率为,乙每次投篮命中的概率为,且各次投篮互不影响.

1)经过轮投篮,记甲的得分为,求的分布列及期望;

2)若经过轮投篮,用表示第轮投篮后,甲的累计得分低于乙的累计得分的概率.

①求

②规定,经过计算机模拟计算可得,请根据①中值求出的值,并由此求出数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆交于不同的两点,线段的中点为,且直线与直线的斜率之积为.若直线与直线交于点,与直线交于点,且点为直线上一点.

1)求的轨迹方程;

2)若为椭圆的上顶点,直线轴交点,记表示面积,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)某中学理学社为了吸收更多新社员,在校团委的支持下,在高一学年组织了抽签赠书活动.月初报名,月末抽签,最初有30名同学参加.社团活动积极分子甲同学参加了活动.

①第一个月有18个中签名额.甲先抽签,乙和丙紧随其后抽签.求这三名同学同时中签的概率.

②理学社设置了第()个月中签的名额为,并且抽中的同学退出活动,同时补充新同学,补充的同学比中签的同学少2个,如果某次抽签的同学全部中签,则活动立刻结束.求甲同学参加活动时间的期望.

2)某出版集团为了扩大影响,在全国组织了抽签赠书活动.报名和抽签时间与(1)中某中学理学社的报名和抽签时间相同,最初有30万人参加,甲同学在其中.每个月抽中的人退出活动,同时补充新人,补充的人数与中签的人数相同.出版集团设置了第()个月中签的概率为,活动进行了个月,甲同学很幸运,中签了,在此条件下,求证:甲同学参加活动时间的均值小于个月.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知等边与直角梯形所在的平面互相垂直,且.

1)证明:直线平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

1)讨论的单调性,设的最小值为,并求证:

2)若有三个零点,求的取值范围.

查看答案和解析>>

同步练习册答案