精英家教网 > 高中数学 > 题目详情

【题目】有一个容量为100的样本,其频率分布直方图如图所示,已知样本数据落在区间[10,12)内的频数比样本数据落在区间[8,10)内的频数少12,则实数m的值等于(
A.0.10
B.0.11
C.0.12
D.0.13

【答案】B
【解析】解:根据题意,样本数据落在区间[10,12)和[8,10)内的频率和为: 1﹣(0.02+0.05+0.15)×2=0.56,
所以频数和为100×0.56=56,
又样本数据落在区间[10,12)内的频数比落在区间[8,10)内的频数少12,
所以样本数据落在区间[8,10)内的频率为 =0.22,
所以m= =0.11.
故选:B.
【考点精析】解答此题的关键在于理解频率分布直方图的相关知识,掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过定点P(2,0)的直线l与曲线y= 相交于A、B两点,O为坐标原点,当△AOB的面积取最大时,直线的倾斜角可以是:①30°;②45°;③60°;④120°⑤150°.其中正确答案的序号是 . (写出所有正确答案的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不过第二象限的直线l:ax﹣y﹣4=0与圆x2+(y﹣1)2=5相切.
(1)求直线l的方程;
(2)若直线l1过点(3,﹣1)且与直线l平行,直线l2与直线l1关于直线y=1对称,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +
(1)求f(x)的定义域A;
(2)若函数g(x)=x2+ax+b的零点为﹣1.5,当x∈A时,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax,(e为自然对数的底数). (Ⅰ)讨论f(x)的单调性;
(Ⅱ)若对任意实数x恒有f(x)≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,﹣2),椭圆E: =1(a>b>0)的离心率为 ,F是椭圆E的右焦点,直线AF的斜率为 ,O为坐标原点
(1)求E的方程
(2)设过点A的动直线l与E相交于P,Q两点,问:是否存在直线l,使以PQ为直径的圆经过点原点O,若存在,求出对应直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|y= },B={x|x<﹣4或x>2}
(1)若m=﹣2,求A∩(RB);
(2)若A∪B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点. (Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值为 ,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的正视图1是一个底边长为4、腰长为3的等腰三角形,图2、图53分别是四棱锥P﹣ABCD的侧视图和俯视图.
(1)求证:AD⊥PC;
(2)求四棱锥P﹣ABCD的侧面积.

查看答案和解析>>

同步练习册答案