精英家教网 > 高中数学 > 题目详情
5.函数$y=\frac{1}{\sqrt{{-x}^{2}+2x+3}}$的单调减区间是(  )
A.(1,3)B.(-∞,1)C.(-1,1)D.[-1,1]

分析 先求出定义域,再结合复合函数的单调性规律可知$y=\frac{1}{\sqrt{{-x}^{2}+2x+3}}$的单调减区间即为y=-x2+2x+3在定义域内的增区间.

解答 解:由函数有意义得-x2+2x+3>0,解得-1<x<3.
又∵y=-x2+2x+3对称轴为x=1,
∴y=-x2+2x+3在(-1,1]单调递增,在(1,3)上单调递减,
∴$y=\frac{1}{\sqrt{{-x}^{2}+2x+3}}$的单调减区间是(-1,1).
故选:C.

点评 本题考查了复合函数的单调性,掌握复合函数的单调性规律是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.掷2个骰子,至少有一个1点的概率为$\frac{11}{36}$.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,∠ACB=90°,D为BC的中点,PA⊥平面ABC,如果PB,PC与平面ABC所成角分别为30°、60°,那么PD与平面ABC所成角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x-1-alnx(其中a为参数).
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若对任意x>0都有f(x)≥0成立,求a的取值范围;
(Ⅲ)点A(x1,y1),B(x2,y2)为曲线y=f(x)上的两点,且0<x1<x2,设直线AB的斜率为k,${x_0}=\frac{{{x_1}+{x_2}}}{2}$,当k>f'(x0)时,证明a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义集合运算A⊙B={c|c=a+b,a∈A,b∈B},设A={0,1,2},B={3,4,5},则集合A⊙B的真子集个数为(  )
A.63B.31C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)在定义域[-1,1]内是递增的函数,而且f(x-1)<f(2x-1),则x的取值范为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,S-ABCD是正四棱锥,已知底面边长AB=6cm,侧棱SA=3$\sqrt{5}$cm,求该正四棱锥的侧面SAB的斜高SE和底面AC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求异面直线BC与AE所成的角;
(2)求直线BE和平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一个圆锥的侧面展开图是圆心角为$\frac{4}{3}π$,半径为18的扇形,则这个圆锥的体积为$288\sqrt{5}π$.

查看答案和解析>>

同步练习册答案