精英家教网 > 高中数学 > 题目详情
已知直线L:y=x+1与曲线C:
x2
a2
+
y2
b2
=1(a>1,b>0)
交于不同的两点A、B,O为坐标原点.
(1)若|OA|=|OB|,试探究在曲线C上仅存在几个点到直线L的距离恰为a-
2
2
?并说明理由;
(2)若OA⊥OB,且a>b,a∈[
6
2
10
2
]
,试求曲线C的离心率e的取值范围.
分析:(1)在曲线C上存在3个点到直线L的距离恰为a-
2
2
.设A(x1,y1),B(x2,y2),由|OA|=|OB|得|OA|2=|OB|2,所以x1+x2=-1,由此能求出结果.
(2)因为a>b,所以曲线C为焦点在x轴上的椭圆,由OA⊥OB,O
A
•O
B
=0
,所以x1x2+y1y2=0,由y1=x1+1,y2=x2+1,知2x1x2+(x1+x2)+1=0,由此能求出曲线C的离心率e的取值范围.
解答:解:(1)在曲线C上存在3个点到直线L的距离恰为a-
2
2

设A(x1,y1),B(x2,y2),
由|OA|=|OB|得|OA|2=|OB|2,(2分)
又点A,B在直线L上,得y1=x1+1,y2=x2+1,
代入上式化简得(x1-x2)(x1+x2+1)=0(4分)
由x1≠x2,∴x1+x2=-1,
y=x+1
x2
a2
+
y2
b2
=1
,得(a2+b2)x2+2a2x+a2-a2b2=0
(6分)
所以x1+x2=-
2a2
a2+b2
=-1

于是a2=b2,这时曲线C表示圆x2+y2=a2
O到直线L的距离d=
1
2
=
2
2

故曲线C上仅存在3个点到直线L的距离恰为a-
2
2
.(8分)
(2)因为a>b,所以曲线C为焦点在x轴上的椭圆
OA⊥OB,O
A
•O
B
=0
,所以x1x2+y1y2=0,
又y1=x1+1,y2=x2+1,∴2x1x2+(x1+x2)+1=0(9分)
由(1)得x1+x2=-
2a2
a2+b2
x1x2=
a2-a2b2
a2+b2

代入上式整理得a2+b2=2a2b2
a2+a2-c2-2a2(a2-c2)=0,c2=
2a2(a2-1)
2a2-1

e2=
c2
a2
=
2(a2-1)
2a2-1
=1-
1
2a2-1
a∈[
6
2
10
2
]

e∈[
2
2
3
2
]

而△=(2a22-4(a2+b2)(a2-a2b2)=4a2b2(a2+b2-1)>0,
e∈[
2
2
3
2
]
.(12分)
点评:本题考查满足条件的点的个数的探索,考查离心率的取值范围的求法,考查推理论证能力,考查推导计算能力,考查等价转化思想,考查分类讨论思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:y=x+k经过椭圆C:
x2
a2
+
y2
a2-1
=1,(a>1)
的右焦点F2,且与椭圆C交于A、B两点,若以弦AB为直径的圆经过椭圆的左焦点F1,试求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=x+1和圆C:x2+y2=
12
,则直线l与圆C的位置关系为
相切
相切

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=-x+1与椭圆
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B两点,且线段AB的中点为(
2
3
, 
1
3
)

(1)求此椭圆的离心率.
(2)若椭圆右焦点关于直线l:y=-x+1的对称点在圆x2+y2=5上,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•菏泽一模)已知直线l:y=x+
6
,圆O:x2+y2=5,椭圆E:
y2
a2
+
x2
b2
=1(a>b>0)的离心率e=
3
3
.直线l截圆O所得的弦长与椭圆的短轴长相等.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过圆O上任意一点P作椭圆E的两条切线.若切线都存在斜率,求证这两条切线互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=x+2,与抛物线x2=y交于A(xA,yA),B(xB,yB)两点,l与x轴交于点C(xC,0).
(1)求证:
1
xA
+
1
xB
=
1
xC

(2)求直线l与抛物线所围平面图形的面积;
(3)某同学利用TI-Nspire图形计算器作图验证结果时(如图1所示),尝试拖动改变直线l与抛物线的方程,发现
1
xA
+
1
xB
1
xC
的结果依然相等(如图2、图3所示),你能由此发现出关于抛物线的一般结论,并进行证明吗?精英家教网

查看答案和解析>>

同步练习册答案