分析 根据正切函数的图象和性质进行求解即可.
解答 解:y=$|tan(-2x-\frac{π}{6})|$+3=|tan(2x+$\frac{π}{6}$)|+3,
由2x+$\frac{π}{6}$=$\frac{kπ}{2}$,即x=$\frac{kπ}{4}$-$\frac{π}{12}$,k∈Z,
即函数的对称轴方程为x=$\frac{kπ}{4}$-$\frac{π}{12}$,k∈Z,
函数的周期T=$\frac{π}{2}$,
由kπ-$\frac{π}{2}$<2x+$\frac{π}{6}$≤kπ,k∈Z得
$\frac{kπ}{2}$-$\frac{π}{3}$<x≤$\frac{kπ}{2}$-$\frac{π}{12}$,k∈Z,
即函数的单调递减区间为($\frac{kπ}{2}$-$\frac{π}{3}$,$\frac{kπ}{2}$-$\frac{π}{12}$],k∈Z,
故答案为:x=$\frac{kπ}{4}$-$\frac{π}{12}$,k∈Z,π,($\frac{kπ}{2}$-$\frac{π}{3}$,$\frac{kπ}{2}$-$\frac{π}{12}$],k∈Z,
点评 本题主要考查正切函数的对称轴,周期以及函数单调性的求解,利用正切函数的图象和性质是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | 5,4 | B. | $\sqrt{3}$,1 | C. | 5,3 | D. | $\frac{\sqrt{7}}{2}$,1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-2,1) | B. | (-∞,-2)∪(1,+∞) | C. | (-∞,-1)∪(2,+∞) | D. | (-1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{13}$ | B. | -$\frac{5}{13}$ | C. | $\frac{2\sqrt{13}}{13}$ | D. | -$\frac{2\sqrt{13}}{13}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com